Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Evolution of directional hearing in moths via conversion of bat detection devices to asymmetric pressure gradient receivers

Reid, Andrew and Marin-Cudraz, Thibaut and Windmill, James F. C. and Greenfield, Michael D. (2016) Evolution of directional hearing in moths via conversion of bat detection devices to asymmetric pressure gradient receivers. Proceedings of the National Academy of Sciences, 113 (48). E7740-E7748. ISSN 1091-6490

[img] Text (Reid-etal-PNAS2016-Evolution-of-directional-hearing-in-moths)
Reid_etal_PNAS2016_Evolution_of_directional_hearing_in_moths.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 14 May 2017.

Download (6MB) | Request a copy from the Strathclyde author


Small animals typically localize sound sources by means of complex internal connections and baffles that effectively increase time or intensity differences between the 2 ears. But some miniature acoustic species achieve directional hearing without such devices, indicating that other mechanisms have evolved. Using 3D laser vibrometry to measure tympanum deflection, we show that female lesser waxmoths (Achroia grisella) can orient toward the 100-kHz male song because each ear functions independently as an asymmetric pressure gradient receiver that responds sharply to high-frequency sound arriving from an azimuth angle 30° contralateral to the animal's midline. We found that females presented with a song stimulus while running on a locomotion compensation sphere follow a trajectory 20° - 40° to the left or right of the stimulus heading but not directly toward it, movement consistent with the tympanum deflections and suggestive of a monaural mechanism of auditory tracking. Moreover, females losing their track typically regain it by auditory scanning – sudden, wide deviations in their heading – and females initially facing away from the stimulus quickly change their general heading toward it, orientation indicating superior ability to resolve the front-rear ambiguity in source location. X-ray CT scans of the moths did not reveal any internal coupling between the 2 ears, confirming for the first time that an acoustic insect can localize a sound source based solely on the distinct features of each ear.