Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Pattern avoidance in forests of binary shrubs

Bevan, David and Levin, Derek and Nugent, Peter and Pantone, Jay and Pudwell, Lara and Riehl, Manda and Tlachac, ML (2016) Pattern avoidance in forests of binary shrubs. Discrete Mathematics and Theoretical Computer Science, 18 (2). ISSN 1365-8050

[img]
Preview
Text (Bevan-etal-DMTCS2016-Pattern-avoidance-in-forests-of-binary-shrubs)
Bevan_etal_DMTCS2016_Pattern_avoidance_in_forests_of_binary_shrubs.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (278kB) | Preview

Abstract

We investigate pattern avoidance in permutations satisfying some additional restrictions. These are naturally considered in terms of avoiding patterns in linear extensions of certain forest-like partially ordered sets, which we call binary shrub forests. In this context, we enumerate forests avoiding patterns of length three. In four of the five non-equivalent cases, we present explicit enumerations by exhibiting bijections with certain lattice paths bounded above by the line y = ℓx , for some ℓ ∈ Q + , one of these being the celebrated Duchon’s club paths with ℓ = 2/3. In the remaining case, we use the machinery of analytic combinatorics to determine the minimal polynomial of its generating function, and deduce its growth rate.