Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2 - chemical characterisation of dispersion strengthening precipitates

Wilson, J.A. and Craven, A.J. and Li, Y. and Baker, T.N. (2007) Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2 - chemical characterisation of dispersion strengthening precipitates. Materials Science and Technology, 23 (5). pp. 519-527. ISSN 0267-0836

[img]
Preview
PDF (strathprints005779.pdf)
strathprints005779.pdf

Download (540kB) | Preview

Abstract

The composition of the sub-15 nm particles in six related vanadium high strength low alloy steels, made by simulated thin slab direct charged casting, has been determined using electron energy loss spectroscopy (EELS). Such particles are considered to be responsible for dispersion hardening. For the first time, particles down to 4 nm in size have had their composition fully determined. In all the steels, the particles were nitrogen and vanadium rich and possibly slightly sub-stoichiometric carbonitrides. Equilibrium thermodynamics predicted much higher carbon to metal atomic ratios than observed in all cases so that kinetics and mechanical deformation clearly control the precipitation process. Thus it is important to formulate the steel with this in mind.