Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Application of the D3H2 methodology for the cost-effective design of dependable systems

Aizpurua, Jose Ignacio and Muxika, Eñaut and Papadopoulos, Yiannis and Chiacchio, Ferdinando and Manno, Gabriele (2016) Application of the D3H2 methodology for the cost-effective design of dependable systems. Safety, 2 (2). ISSN 2313-576X

[img]
Preview
Text (Aizpurua-etal-Safety-2016-Application-of-the-D3H2-methodology-for-the-cost-effective-design-of-dependable-systems)
Aizpurua_etal_Safety_2016_Application_of_the_D3H2_methodology_for_the_cost_effective_design_of_dependable_systems.pdf - Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

The use of dedicated components as a means of achieving desirable levels of fault tolerance in a system may result in high costs. A cost effective way of restoring failed functions is to use heterogeneous redundancies: components that, besides performing their primary intended design function, can also restore compatible functions of other components. In this paper, we apply a novel design methodology called D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) to assist in the systematic identification of heterogeneous redundancies, the design of hardware/software architectures including fault detection and reconfiguration, and the systematic dependability and cost assessments of the system. D3H2 integrates parameter uncertainty and criticality analyses to model inexact failure data in dependability assessment. The application to a railway case study is presented with a focus on analysing different reconfiguration strategies as well as types and levels of redundancies.