Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Avoiding vincular patterns on alternating words

Gao, Alice L.L. and Kitaev, Sergey and Zhang, Philip B. (2016) Avoiding vincular patterns on alternating words. Discrete Mathematics, 339. pp. 2079-2093. ISSN 0012-365X

[img]
Preview
Text (Gao-Kitaev-Zhang-DM2016-avoiding-vincular-patterns-on-alternating-words)
Gao_Kitaev_Zhang_DM2016_avoiding_vincular_patterns_on_alternating_words.pdf - Accepted Author Manuscript

Download (141kB) | Preview

Abstract

A word $w=w_1w_2\cdots w_n$ is alternating if either $w_1<w_2>w_3<w_4>\cdots$ (when the word is up-down) or $w_1>w_2<w_3>w_4<\cdots$ (when the word is down-up). The study of alternating words avoiding classical permutation patterns was initiated by the authors in~\cite{GKZ}, where, in particular, it was shown that 123-avoiding up-down words of even length are counted by the Narayana numbers.However, not much was understood on the structure of 123-avoiding up-down words. In this paper, we fill in this gap by introducing the notion of a cut-pair that allows us to subdivide the set of words in question into equivalence classes. We provide a combinatorial argument to show that the number of equivalence classes is given by the Catalan numbers, which induces an alternative (combinatorial) proof of the corresponding result in~\cite{GKZ}.Further, we extend the enumerative results in~\cite{GKZ} to the case of alternating words avoiding a vincular pattern of length 3. We show that it is sufficient to enumerate up-down words of even length avoiding the consecutive pattern $\underline{132}$ and up-down words of odd length avoiding the consecutive pattern $\underline{312}$ to answer all of our enumerative questions. The former of the two key cases is enumerated by the Stirling numbers of the second kind.