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Abstract. A word w = w1w2 · · ·wn is alternating if either w1 < w2 > w3 < w4 > · · ·
(when the word is up-down) or w1 > w2 < w3 > w4 < · · · (when the word is down-up).
The study of alternating words avoiding classical permutation patterns was initiated by
the authors in [3], where, in particular, it was shown that 123-avoiding up-down words of
even length are counted by the Narayana numbers.

However, not much was understood on the structure of 123-avoiding up-down words.
In this paper, we fill in this gap by introducing the notion of a cut-pair that allows us to
subdivide the set of words in question into equivalence classes. We provide a combinatorial
argument to show that the number of equivalence classes is given by the Catalan numbers,
which induces an alternative (combinatorial) proof of the corresponding result in [3].

Further, we extend the enumerative results in [3] to the case of alternating words
avoiding a vincular pattern of length 3. We show that it is sufficient to enumerate up-
down words of even length avoiding the consecutive pattern 132 and up-down words of odd
length avoiding the consecutive pattern 312 to answer all of our enumerative questions.
The former of the two key cases is enumerated by the Stirling numbers of the second kind.

Keywords: alternating word, up-down word, pattern-avoidance, Narayana number,
Catalan number, Stirling number of the second kind, Dyck path
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1 Introduction

A permutation π = π1π2 · · · πn is called up-down if π1 < π2 > π3 < π4 > π5 < · · · .
A permutation π = π1π2 · · · πn is called down-up if π1 > π2 < π3 > π4 < π5 > · · · . A
famous result of André states that if En is the number of up-down (equivalently, down-up)
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permutations of 1, 2, . . . , n, then∑
n≥0

En
xn

n!
= sec x+ tan x.

Some aspects of up-down and down-up permutations1 are surveyed in [9]. Slightly abusing
these definitions, we refer to alternating permutations as the union of up-down and down-
up permutations2. The study of alternating permutations was extended to other types of
alternating sequences, for example, to up-down multi-permutations [5]. For other relevant
sources see [4] and [6].

In [3] we extended the study of alternating permutations to that of alternating words.
These words, also called zigzag words, are the union of up-down and down-up words,
which are defined in a similar way to the definition of up-down and down-up permutations,
respectively. Namely, a word w = w1w2 · · ·wn is up-down (resp., down-up) if w1 < w2 >
w3 < · · · (resp., w1 > w2 < w3 > · · · )3. For example, 1214, 2413, 2424 and 3434 are
examples of up-down words of length 4 over the alphabet {1, 2, 3, 4}. In this paper, we
write the entries of an up-down word w as w = b1t1b2t2 · · · where bi < ti > bi+1 for i ≥ 1.
We call a letter bi a bottom element and ti a top element.

For a word w = w1w2 · · ·wn over the alphabet {1, 2, . . . , k}, its complement wc is
the word c1c2 · · · cn, where for each i = 1, 2, . . . , n, ci = k + 1 − wi. For example, the
complement of the word 24265 over the alphabet {1, 2, . . . , 6} is 53512. For a word
w = w1w2 · · ·wn, its reverse wr is the word wnwn−1 · · ·w1. For example, if w = 53512
then wr = 21535.

We say that a permutation π = π1π2 · · · πn contains an occurrence of a pattern τ =
τ1τ2 · · · τk if there are 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1πi2 · · · πik is order-
isomorphic to τ . If π does not contain an occurrence of τ , we say that π avoids τ . For
example, the permutation 315267 contains several occurrences of the pattern 123, such
as, the subsequences 356 and 157, while this permutation avoids the pattern 321. Such
patterns are referred to as “classical patterns” in the theory of patterns in permutations
and words (see [7] for a comprehensive introduction to the theory). Occurrences of a
pattern in words are defined similarly as subsequences order-isomorphic to a given word
called pattern. The only difference between word and permutation patterns is that word
patterns can contain repetitive letters, which is not in the scope of this paper.

Another type of patterns of interest to us is vincular patterns, also known as generalized
patterns [2], in occurrences of which some of the letters may be required to be adjacent in a

1Up-down and down-up permutations are also called in the literature reverse alternating and alter-
nating permutations, respectively.

2The union of up-down and down-up permutations is also known in the literature as the set of zigzag
permutations.

3We note that there are other ways to extend the notion of alternating permutations to words. For
example, one can replace “>” and “<” by “≥” and “≤”, respectively, in the definition of alternating
words to define what we call weak alternating words. Weak alternating words are not in the scope of this
paper.
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permutation or a word. We underline letters of a given pattern to indicate the letters that
must be adjacent in any occurrence of the pattern. For example, the word w = 1244254
contains four occurrences of the pattern 132, namely, the subsequences 142, 154, and
254 twice: in each of these occurrences, the letters in w corresponding to 2 and 3 in the
pattern stay next to each other. On the other hand, w contains just one occurrence of
the pattern 132 formed by the rightmost three letters in w. If all letters in an occurrence
of a pattern are required to stay next to each other, which is indicated by underlying all
letters in the pattern, such patterns are called consecutive patterns. Vincular patterns
play an important role in the theory of patterns in permutations and words (see Sections
3.3 and 3.4 in [7] for details).

In this paper, [k] = {1, 2, . . . , k}, Sp
k,n denotes the set of p-avoiding up-down words of

length n over [k], and Np
k,n denotes the number of words in Sp

k,n. Two patterns, p1 and
p2, are Wilf-equivalent if Np1

k,n = Np2
k,n for n ≥ 0 and k ≥ 1. Also, for a word w, {w}+

denotes a word in {w,ww,www, . . .} and {w}∗ denotes a word in {w}+ ∪ {ϵ}, where ϵ is
the empty word. Moreover, recall that the n-th Catalan number is Cn = 1

n+1

(
2n
n

)
and the

Narayana number Nn,m is 1
m+1

(
n
m

)(
n−1
m

)
. Also, a Dyck path of semi-length n is a lattice

path with steps (1, 1) and (1,−1) which begins at (0, 0), ends at (2n, 0), and never goes
below the x-axis.

The content of this paper is as follows. In Section 2 we not only discuss in more detail
the structure of 123-avoiding up-down words of even length, but also give an alternative,
combinatorial way to show that the number of these words is given by the Narayana
numbers. Originally, this fact was established in [3]. An essential part of our studies here
is the notion of a cut-pair, which allows us to subdivide the set of words in question into
equivalence classes. We prove that the number of equivalence classes is counted by the
Catalan numbers, which is done by establishing a bijection between the classes and Dyck
paths of certain length.

Further, in Sections 3 and 4 we extend the enumerative results in [3] to the case of
alternating words avoiding a vincular pattern of length 3. This direction of research is
also an extension of vincular pattern-avoidance results on all words to alternating words;
see [7, Section 7.2] for a survey of the respective results.

Table 1 shows Wilf-equivalent classes, where A is given by Theorem 3.3, B by The-
orem 3.4, C by Theorem 3.8, and D by Theorem 3.7. Also, G, H, N are given by
Corollary 4.5 and Theorem 4.6, and E and F by Theorems 4.8 and 4.9. Finally, we do
not give separate enumeration for K and L, but treat these cases together in Theorem 3.1
by providing a recurrence relation for these numbers. In particular, we show that it is
sufficient to enumerate up-down words of even length avoiding the consecutive pattern
132 (corresponding to A in Table 1) and up-down words of odd length avoiding the con-
secutive pattern 312 (corresponding to D in Table 1) to deduce all of our enumerative
results. Note that A in Table 1 is given by the Stirling numbers of the second kind S(n,m)
counting the number of ways to partition a set of n elements into m nonempty subsets.

All our results in this paper are for up-down pattern-avoiding words. However, they
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123 132 213 231 312 321
even length K A A C C K
odd length L B D B D L

123 132 213 231 312 321
even length A A N N C E
odd length F B H G D D

123 132 213 231 312 321
even length A N A C N E
odd length D G D B H F

Table 1: Wilf-equivalence for the enumerative results in this paper. The results encoded
by A–L are given by Theorems 3.1, 3.3, 3.4, 3.7, 3.8, 4.6, 4.8, 4.9 and Corollary 4.5.

can be easily turned into results on down-up pattern-avoiding words by using the com-
plement operation.

2 Structure of 123-avoiding up-down words of even

length

Recall that 123-avoiding up-down words were enumerated in [3]. To be more precise, the
following theorem was proved in [3].

Theorem 2.1 ([3]). For p ∈ {123, 132, 312, 213, 231} and i ≥ 1,

Np
k,2i = Nk+i−1,i,

where Nk,j, for 0 ≤ j ≤ k − 1, is the Narayana number 1
j+1

(
k
j

)(
k−1
j

)
.

In this section, we give more details on the structure of 123-avoiding up-down words,
and provide an alternative, combinatorial proof for their enumeration.

2.1 Cut-pairs and cut-equivalence

We begin with a description of the structure of 123-avoiding up-down words of even length.

Lemma 2.2. An up-down word w = b1t1b2t2 · · · biti is 123-avoiding if and only if the
following two conditions hold:

(a) b1 ≥ b2 ≥ · · · ≥ bi,
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(b) t1 ≥ t2 ≥ · · · ≥ ti.

Proof. We first show that if w is a 123-avoiding up-down word, then (a) and (b) hold.
(a) is true since if there exist 1 ≤ j1 < j2 ≤ i such that bj1 < bj2 , then bj1bj2tj2 forms the
pattern 123. Similarly, (b) is true since if there exist 1 ≤ j1 < j2 ≤ i such that tj1 < tj2 ,
then bj1tj1tj2 forms the pattern 123.

We next prove that any up-down word w satisfying (a) and (b) must be 123-avoiding.
Suppose that there is an occurrence xyz of the pattern 123 in w. Then at most one of the
three letters x, y and z can stay in bottom positions, since otherwise it would contradict
the condition (a). Similarly, due to (b), at most one of the three letters can stay in top
positions. This is impossible and thus w is 123-avoiding, which completes the proof.

Definition 1. Given a word w = b1t1b2t2 · · · biti ∈ S123
k,2i, suppose that all pairs bjtj (1 ≤

j ≤ i) in w are distinct. Then bjtj is a cut-pair if

• 1 < bj < k − 1 and bj > bm for all j + 1 ≤ m ≤ i, and

• 2 < tj < k and tj < tm for 1 ≤ m ≤ j − 1.

Furthermore, if w contains repeated pairs then bjtj is a cut-pair if it is a cut-pair in
the word obtained from w by removing all repetitions of repeated pairs.

For example, given k = 6, the word w = 4645252512 ∈ S123
6,10 has only one cut-pair

45. On the other hand, 25 is a cut-pair in the word 252525 ∈ S123
6,10. For yet another

example, the word 262626 ∈ S123
6,10 has no cut-pair. The word “cut” in “cut-pair” came

in analogy with the notion of a cut-point in a permutation that can be used to define
reducible/irreducible permutations [7]. A cut-point in that context is a place in the per-
mutation, where every element to the left of the place is smaller than every element to
the right of it.

Combining the definition of cut-pairs with Lemma 2.2, it is easy to see that if a 123-
avoiding up-down word w = b1t1b2t2 · · · biti has cut-pairs bp1tp1 , bp2tp2 , . . . , bpj tpj , then we
must have k − 1 > bp1 > bp2 > · · · > bpj > 1 and k > tp1 > tp2 > · · · > tpj > 2.

Definition 2. Two words w1, w2 ∈ S123
k,2i are cut-equivalent if their sets of cut-pairs are

the same.

Clearly, “to be cut-equivalent” is an equivalence relation on S123
k,2i, and the correspond-

ing equivalence classes are uniquely characterized by the cut-pairs. Let F123
k,2i denote the

set of cut-equivalence classes of F123
k,2i. For any cut-equivalence class f in F123

k,2i, denote by
n(f) the number of cut-pairs each word in f has (this number is the same for any word
in f by definition).
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Lemma 2.3. The cut-equivalence class in F123
k,2i with cut-pairs bp1tp1 , bp2tp2 , . . . , bpj tpj ,

where p1 < p2 < · · · < pj, consists of the words of length 2i that can be generated from
the expression

{(k − 1)k}∗{(k − 2)k}∗ · · · {bp1k}∗{bp1(k − 1)}∗ · · · {bp1tp1}+{(bp1 − 1)tp1}∗ · · ·

{bp2tp1}∗{bp2(tp1 − 1)}∗ · · · {bpj tpj}+ · · · {1tpj}∗ · · · {12}∗, (1)

where the second line is continuation of the first one. Moreover, two different expressions
of the form (1) cannot generate the same word.

Proof. All the words of length 2i that can be generated from the expression (1) are
clearly 123-avoiding. Moreover, by the definition of cut-pairs, these words have cut-pairs
bp1tp1 , bp2tp2 , . . . , bpj tpj .

Conversely, we shall show that any 123-avoiding word w with cut-pairs bp1tp1 , bp2tp2 , . . . ,
bpj tpj can be generated from (1). Without loss of generality, suppose that all the pairs
bjtj in w are distinct. We first prove the following claim.

Claim: If there is a pair bxtx between bpmtpm and bpm+1tpm+1 (1 ≤ m ≤ j − 1), then
bpm > bx > bpm+1 and tpm > tx > tpm+1 cannot be satisfied at the same time.

Proof of the Claim. If some pair bxtx between bpmtpm and bpm+1tpm+1 has the property
bpm > bx > bpm+1 and tpm > tx > tpm+1 , then there are two cases to consider.

Case 1: There exists at least one pair byty between bxtx and bpm+1tpm+1 in w such that
by = bx. We list all such pairs as by1ty1 , by2ty2 , . . . , bystys , where bx = by1 = by2 = · · · = bys
and tx > ty1 > ty2 > · · · > tys . But then bystys must be a cut-pair by the definition, which
contradicts the assumption that there is no cut-pair between bpmtpm and bpm+1tpm+1 .

Case 2: There exist no pair byty between bxtx and bpm+1tpm+1 such that by = bx. Then
there must exist at least one pair bztz such that tz = tx between bpmtpm and bxtx in w,
since otherwise bxtx would be a cut-pair. We list all such pairs as bz1tz1 , bz2tz2 , . . . , bzstzs ,
where bz1 > bz2 > · · · > bzs > bx and tz1 = tz2 = · · · = tzs = tx. But then bz1tz1 must be a
cut-pair, which also contradicts the assumption that there is no cut-pair between bpmtpm
and bpm+1tpm+1 .

This completes the proof of the claim.

We next show that the subword of w starting at bpmtpm and ending at bpm+1tpm+1

(1 ≤ m ≤ j − 1) belongs to the set of words generated from the expression

{bpmtpm}+{(bpm − 1)tpm}∗ · · · {bpm+1tpm}∗{bpm+1(tpm − 1)}∗ · · · {bpm+1tpm+1}+. (2)

Indeed, if a pair bxtx is between bpmtpm and bpm+1tpm+1 in w, then combining the defi-
nition of a cut-pair with Lemma 2.2, there is bpm > bx ≥ bpm+1 and tpm ≥ tx > tpm+1 .
Together with the claim above, we have either bpm > bx > bpm+1 , tx = tpm , or bx = bpm+1 ,
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tpm ≥ tx > tpm+1 . Thus, for any two distinct pairs bxtx and byty between bpmtpm and
bpm+1tpm+1 in w, there are three cases to consider.

Case 1: bpm > bx > bpm+1 , tx = tpm , and bpm > by > bpm+1 , ty = tpm . Then bxtx is to the
left of byty in w if bx > by and to the right of it otherwise.

Case 2: bpm > bx > bpm+1 , tx = tpm , and by = bpm+1 , tpm ≥ ty > tpm+1 . Then bxtx is to the
left of byty in w.

Case 3: bx = bpm+1 , tpm ≥ tx > tpm+1 , and by = bpm+1 , tpm ≥ ty > tpm+1 . Then bxtx is to
the left of byty in w if tx > ty and to the right of it otherwise.

Hence, it follows that the subword of w between bpmtpm and bpm+1tpm+1 (1 ≤ m ≤ j − 1)
can be generated by an expression of the form (2).

Similarly, if there is a pair bxtx to the left of bp1tp1 in w, then k > bx > bp1 and
k > tx > tp1 can not happen at the same time. That is to say, there is k > bx > bp1 and
tx = k, or bx = bp1 and k ≥ tx > tp1 . The subword of w to the left of bp1tp1 belongs to the
set of words that can be generated by the expression

{(k − 1)k}∗ · · · {bp1k}∗{bp1(k − 1)}∗ · · · {bp1tp1}+.

And similarly, if there is a pair bxtx is to the right of bpj tpj in w, then bpj > bx > 1
and tpj > tx > 1 cannot happen at the same time. That is to say, there is bpj > bx > 1
and tx = tpj , or bx = 1 and tpj ≥ tx > tp1 . The subword of w after bpj tpj belongs to the
set of words that can be generated by the expression

{bpj tpj}+{(bpj − 1)tpj}∗ · · · {1tpj}∗ · · · {12}∗.

Thus, we obtain that every word w ∈ S123
k,2i with cut-pairs bp1tp1 , bp2tp2 , . . . , bpj tpj , where

p1 < p2 < · · · < pj, belongs to the set of words that can be generated by the expression (1).

Finally, two different expressions of the form (1) cannot produce the same word since
they belong to two different cut-equivalence classes. This completes the proof.

From Lemma 2.3, we see that each cut-equivalence class in S123
k,2i can be represented

by an expression of the form (1). For example, given k = 5, there are five solutions to
4 > bp1 > · · · > bpj > 1 and 5 > tp1 > · · · > tpj > 2 with bps < bps for 1 ≤ s ≤ j.
Indeed, it is not difficult to see that 0 ≤ j ≤ 2. When j = 0, the solution is the empty
set; when j = 1, the three solutions are {23}, {24} and {34}; when j = 2, the unique
solution is {34, 23}. Note that each solution corresponds to a cut-equivalence class with
the corresponding cut-pairs. Thus F123

5,2i, the set of cut-equivalence classes for S123
5,2i, is as

follows:
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Class 1: {45}∗{35}∗{25}∗{15}∗{14}∗{13}∗{12}∗;

Class 2: {45}∗{35}∗{25}∗{24}+{14}∗{13}∗{12}∗;

Class 3: {45}∗{35}∗{25}∗{24}∗{23}+{13}∗{12}∗;

Class 4: {45}∗{35}∗{34}+{24}∗{14}∗{13}∗{12}∗;

Class 5: {45}∗{35}∗{34}+{24}∗{23}+{13}∗{12}∗.

2.2 A bijection between Dyck paths and cut-equivalence classes

Let Dn denote the set of all Dyck paths of semi-length n. It is a well-known fact that the
number of paths in Dn is given by Cn, the n-th Catalan number.

Each Dyck path in Dn can be encoded by a Dyck word π = π1π2 · · · π2n, where πi ∈
{U,D} for 1 ≤ i ≤ 2n, and π satisfies the condition that for 1 ≤ k ≤ 2n, the number of Us
in π1π2 · · · πk is no less than the number of Ds there. Thus, U corresponds to an up-step
(1, 1) and D corresponds to a down-step (1,−1). Slightly abusing the terminology, we
think of a Dyck path to be the same as the Dyck word encoding it.

A valley in π ∈ Dn is an occurrence of DU , that is, a U in π immediately preceded by
a D. We let v(π) denote the number of valleys in π. For example, Figure 1 shows a Dyck
path π of semi-length 8 with v(π) = 3. It is a well-known result that the number of Dyck
paths of semi-length n with j valleys is given the Narayana number Nn,j =

1
j+1

(
n
j

)(
n−1
j

)
,

where 0 ≤ j ≤ n− 1.

.

Figure 1: The Dyck path π = UUDDUUUUDDDUDUDD.

Given a cut-equivalence class in S123
k,2i, we define a Dyck path as follows: start at the

point (0, 0) and go along an up-step. Then if the pair immediately after (k−2)k is (k−3)k,
go along an up-step, while if it is (k − 2)(k − 1), go along a down-step. In general, if in
the following pair the bottom element is decreased by 1, go along an up-step, while if the
top element there is decreased by 1, go along a down-step. See Figure 2 for an example
when k = 5. Note that cut-pairs in the correspondence given by Figure 2 correspond to
valleys, which is not a coincidence. This correspondence leads to the following theorem,
the main result of this subsection.

Theorem 2.4. There is a bijection ϕ from F123
k,2i to Dk−2 such that if f ∈ F123

k,2i and
ϕ(f) = π then the number of cut-pairs n(f) is equal to the number of valleys v(π).
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Figure 2: The correspondence between cut-equivalence classes and Dyck paths.

Proof. Let f be the cut-equivalence class in F123
k,2i with cut-pairs bp1tp1 , bp2tp2 , . . ., bpj tpj .

We define π = ϕ(f) to be

U · · ·U︸ ︷︷ ︸
k−1−bp1

D · · ·D︸ ︷︷ ︸
k−tp1

U · · ·U︸ ︷︷ ︸
bp1−bp2

D · · ·D︸ ︷︷ ︸
tp1−tp2

· · · · · · U · · ·U︸ ︷︷ ︸
bpj−1−bpj

D · · ·D︸ ︷︷ ︸
tpj−1−tpj

U · · ·U︸ ︷︷ ︸
bpj−1

D · · ·D︸ ︷︷ ︸
tpj−2

. (3)

In particular, if f is the unique cut-equivalence class containing no cut-pairs, then

ϕ(f) = U · · ·U︸ ︷︷ ︸
k−2

D · · ·D︸ ︷︷ ︸
k−2

.

Clearly, π contains k − 2 up-steps and k − 2 down-steps. Moreover, since bpℓ < tpℓ for
1 ≤ ℓ ≤ j, we have that k − 1 − bpℓ ≥ k − tpℓ for 1 ≤ ℓ ≤ j, which implies that the
number of up-steps is never less than that of down-steps in any initial part of π. Thus,
π ∈ Dk−2. Finally, note that π contains exactly j valleys since there are j DUs in π, and
thus n(f) = v(π).

In order to show that ϕ is injective, we need to show that for different f1, f2 ∈ F123
k,2i, we

have ϕ(f1) ̸= ϕ(f2). If n(f1) ̸= n(f2), then v(ϕ(f1)) ̸= v(ϕ(f2)) and thus ϕ(f1) ̸= ϕ(f2). If
n(f1) = n(f2) = j, where 1 ≤ j ≤ k− 3, suppose that the cut-pairs of f1 are bp1tp1 , bp2tp2 ,
. . ., bpj tpj and the cut-pairs of f2 are b

′
p1
t
′
p1
, b

′
p2
t
′
p2
, . . ., b

′
pj
t
′
pj
. Let j∗ be the smallest index

such that bpj∗ tpj∗ ̸= b
′
pj∗

t
′
pj∗

, so that for any j∗∗, 1 ≤ j∗∗ < j∗, we have bpj∗∗ tpj∗∗ = b
′
pj∗∗

t
′
pj∗∗

.

According to the definition of ϕ, ϕ(f1) and ϕ(f2) are the same in the first k−1−bpj∗−1
up-

steps and the first k−tpj∗−1
down-steps. Then in ϕ(f1), bpj∗−1

−bpj∗ up-steps and tpj∗−1
−tpj∗

down-steps follow, and in ϕ(f2), bpj∗−1
− b

′
pj∗

up-steps and tpj∗−1
− t

′
pj∗

down-steps follow.

However, because either bpj∗−1
− bpj∗ ̸= bpj∗−1

− b
′
pj∗

or tpj∗−1
− tpj∗ ̸= tpj∗−1

− t
′
pj∗

, we have

that ϕ(f1) ̸= ϕ(f2).

To complete the proof, it remains to describe the inverse map ϕ−1. For any Dyck path
π ∈ Dk−2 with v(π) = j, π must be of the form

U · · ·U︸ ︷︷ ︸
α1

D · · ·D︸ ︷︷ ︸
β1

U · · ·U︸ ︷︷ ︸
α2

D · · ·D︸ ︷︷ ︸
β2

· · · · · ·U · · ·U︸ ︷︷ ︸
αj

D · · ·D︸ ︷︷ ︸
βj

U · · ·U︸ ︷︷ ︸
αj+1

D · · ·D︸ ︷︷ ︸
βj+1

, (4)

where αm > 0 and βm > 0 for 1 ≤ m ≤ j + 1, and
∑j+1

i=1 αi =
∑j+1

i=1 βi = k− 2. We define
the corresponding cut-equivalence class as follows. For 1 ≤ m ≤ j, let

bpm = k − 1− (α1 + α2 + · · ·+ αm)
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and
tpm = k − (β1 + β2 + · · ·+ βm).

It is clear that k − 1 > bp1 > bp2 > · · · > bpj > 1 and k > tp1 > tp2 > · · · > tpj > 2.
By Lemma 2.3, the cut-pairs of a 123-avoiding up-down word uniquely determine the
cut-equivalence class that it belongs to. Thus, we can determine the cut-equivalence class
f corresponding to the Dyck path π from the sequence of integer pairs {(bpm , tpm)}

j
m=1.

Clearly, we have n(f) = j.

Moreover, combining forms (3) and (4), we can get that ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ = id. This
completes the proof.

To illustrate the bijection given in Theorem 2.4, we consider the set S123
5,2i whose five

cut-equivalence classes were listed above. The Dyck paths corresponding to these classes,
in the respective order, are given in Figure 3. Class 1 is the only class in S123

5,2i which has
no cut-pair. Classes 2, 3 and 4 have one cut-pair. The only class in S123

5,2i which has two
cut-pairs is Class 5.

......

Figure 3: Dyck paths corresponding to cut-equivalence Classes 1–5 in S123
5,2i, respectively.

The following statement is an immediate corollary to Theorem 2.4 and well-known
enumerative properties of Dyck paths.

Corollary 2.5. There are Ck−2 equivalence classes with respect to the cut-equivalence
relation in S123

k,2i. Moreover, the number of cut-equivalence classes with j cut-pairs in S123
k,2i

is Nk−2,j, where 0 ≤ j ≤ k − 3.

2.3 An alternative enumeration of N123
k,2i

Corollary 2.5 allows us to give an alternative, combinatorial proof of the following theorem
appearing in [3].

Theorem 2.6 ([3]). For k ≥ 3, we have

N123
k,2i =

1

i+ 1

(
i+ k − 2

i

)(
i+ k − 1

i

)
.

Proof. Let f be the cut-equivalence class corresponding to cut-pairs bp1tp1 , bp2tp2 , . . .,
bpj tpj . We first claim that the number of words of length 2i belonging to f is

(
2k−4+i−j

2k−4

)
.

Indeed, by Lemma 2.3, any word w ∈ f must be obtained from (1). Further, by The-
orem 2.4, there are at most 2(k − 2) + 1 = 2k − 3 distinct pairs in (1), which gives an

10



upper bound on the number of distinct pairs in Pw. For 1 ≤ i ≤ 2k − 3, we let xi

denote the number of times the i-th pair in (1), from left to right, appears in w. Thus
the words in f are in 1-to-1 correspondence with nonnegative solutions of the equation
x1 + x2 + · · ·+ x2k−3 = i, where j specified xms (corresponding to cut-pairs) are forced to
be positive. The number of such solutions is

(
2k−4+i−j

2k−4

)
, as desired.

Combining the last statement with Corollary 2.5, we obtain that

N123
k,2i =

k−3∑
j=0

Nk−2,j

(
2k − 4 + i− j

2k − 4

)
.

In what follows, we shall give a closed form formula for N123
k,2i. We start with using the

formula for the Narayana numbers Nk−2,j to obtain

N123
k,2i =

k−3∑
j=0

1

j + 1

(
k − 3

j

)(
k − 2

j

)(
2k − 4 + i− j

2k − 4

)
.

Since the factor
(
k−3
j

)
vanishes for j > k − 3, we have that

N123
k,2i =

∞∑
j=0

1

j + 1

(
k − 3

j

)(
k − 2

j

)(
2k − 4 + i− j

2k − 4

)
. (5)

We next use the approach described in [8, p. 35] to express (5) in terms of a hypergeometric

series. Denote (a)n the rising factorial a(a+ 1) · · · (a+ n− 1) and let 3F2

[
a1 a2 a3
b1 b2

; z

]
be

∞∑
s=0

(a1)s(a2)s(a3)s
(b1)s(b2)ss!

zs.

Since the constant coefficient of (5) is
(
i+2k−4
2k−4

)
and the ratio between consecutive coeffi-

cients in (5) is

[xj+1]N123
k,2i

[xj]N123
k,2i

=
(3− k + j)(2− k + j)(−i+ j)

(2 + j)(4− i− 2k + j)(1 + j)
,

it follows that N123
k,2i can be expressed as(

i+ 2k − 4

2k − 4

)
× 3F2

[
3− k, 2− k,−i

2, 4− i− 2k
; 1

]
. (6)

The Saalschütz identity [1, p. 9] says that

3F2

[
a, b,−n

c, 1 + a+ b− c− n
; 1

]
=

(c− a)n(c− a)n
(c)n(c− a− b)n

.

11



By setting a = 3− k, b = 2− k, c = 2 and i = n, we have that

3F2

[
3− k, 2− k,−i

2, 4− i− 2k
; 1

]
=

(k − 1)i(k)i
(2)i(2k − 3)i

=
(i+ k − 2)!(i+ k − 1)!(2k − 4)!

(k − 2)!(k − 1)!(i+ 1)!(i+ 2k − 4)!
.

Substituting the last formula into (6), we obtain that

N123
k,2i =

1

i+ 1

(
i+ k − 2

i

)(
i+ k − 1

i

)
,

which completes the proof.

To illustrate Theorem 2.6, the words in the five cut-equivalence classess in S123
5,2i are

enumerated by
(
i+6
6

)
,
(
i+5
6

)
,
(
i+5
6

)
,
(
i+5
6

)
, and

(
i+4
6

)
, respectively. Hence, the number of

words in S123
5,2i is(

i+ 6

6

)
+ 3

(
i+ 5

6

)
+

(
i+ 4

6

)
=

1

i+ 1

(
i+ 4

4

)(
i+ 3

3

)
.

3 Enumeration of length 3 consecutive pattern-avoiding

up-down words

The following theorem is a straightforward corollary to Formula (1) in [3], since the
patterns 123 and 321 do not bring any new restrictions on alternating words, and thus
S123
k,ℓ = S321

k,ℓ is the set of up-down words of length ℓ over [k]. In what follows, δa,b is the
Kronecker delta, which is equal to 1 if a = b and 0 otherwise. Also, χ(a) equals 1 if a is
true, and 0 otherwise.

Theorem 3.1. We have
N123

k,ℓ = N321
k,ℓ = Mk,ℓ,

where the numbers Mk,ℓ satisfy the following recurrence relation for k ≥ 3 and ℓ ≥ 2:

Mk,ℓ = Mk−1,ℓ +

⌊ ℓ−1
2

⌋∑
i=0

Mk−1,2iMk,ℓ−2i−1 − χ(ℓ is even ) ·Mk−1,ℓ−2 (7)

with the initial conditions Mk,0 = 1, Mk,1 = k for k ≥ 2, and M2,ℓ = 1 for ℓ ≥ 2.

3.1 132-avoiding up-down words

Table 2 provides the numbers N132
k,ℓ of 132-avoiding up-down words of length ℓ over an

alphabet [k] for small values of k and ℓ. For convenience, we present separately even and
odd length cases.
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k
ℓ

0 2 4 6 8

2 1 1 1 1 1
3 1 3 7 15 31
4 1 6 25 90 301
5 1 10 65 350 1701

k
ℓ

1 3 5 7 9

2 2 1 1 1 1
3 3 4 8 16 32
4 4 10 33 106 333
5 5 20 98 456 2034

Table 2: N132
k,ℓ for small values of k and ℓ.

Lemma 3.2. An up-down word w = w1w2 · · ·wℓ is 132-avoiding if and only if the bottom
elements of w are weakly decreasing from left to right, i.e.,

b1 ≥ b2 ≥ · · · ≥ b⌈ ℓ
2
⌉.

Proof. If there were some j, 1 ≤ j ≤ ⌈ ℓ
2
⌉ − 1, such that bj < bj+1, then bjtjbj+1 would

form an occurrence of the pattern 132.

Conversely, if there is an occurrence wjwj+1wj+2 of the pattern 132 in w, where 1 ≤
j ≤ ℓ−2, then we have wj < wj+2 < wj+1. According to the definition of up-down words,
wj+1 must be a top element in w, and wj and wj+2 must be bottom elements in w, and
wj < wj+2.

This completes the proof.

Let Ak,ℓ = N132
k,ℓ . Next theorem enumerates Ak,2i.

Theorem 3.3. For all k ≥ 2 and i ≥ 0, we have

Ak,2i = S(k + i− 1, k − 1),

where S(n,m) is a Stirling number of the second kind.

Proof. Note that for k ≥ 3 and i ≥ 1, any 132-avoiding up-down word w of length 2i over
[k], belongs to one of the following two cases:

(a) There are no 1s in w. These words are counted by Ak−1,2i (which can be seen by
subtracting a 1 from each element in w);

(b) There is at least one 1 in w. By Lemma 3.2, w2i−1 = 1, since w2i−1 is the minimum
element in w. Thus w is of the form w′1w′′, where w′ is a 132-avoiding up-down
word of length 2i− 2 and w′′ is a letter in {2, 3, . . . , k}. Such words are counted by
(k − 1)Ak,2i−2.

Hence for k ≥ 3 and i ≥ 1, the numbers Ak,2i satisfy the recurrence relation

Ak,2i = Ak−1,2i + (k − 1)Ak,2i−2 (8)
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with the initial conditions A2,2i = 1 for all i ≥ 1 and Ak,0 = 1 for all k ≥ 2, which are
easy to check.

We have that Ak,2i = S(k+ i− 1, k− 1) since these numbers have the same recurrence
relation and initial conditions. Indeed, from a well-known recurrence relation for the
Stirling numbers of the second kind,

S(k + i− 1, k − 1) = S(k + i− 2, k − 2) + (k − 1)S(k + i− 2, k − 1),

together with their initial conditions S(i+ 1, 1) = 1 for all i ≥ 0 and S(k − 1, k − 1) = 1
for all k ≥ 2.

We now turn our attention to considering Ak,2i+1.

Theorem 3.4. For all k ≥ 2 and i ≥ 1, we have

Ak,2i+1 =
k∑

j=2

Aj,2i. (9)

Proof. Let Aj
k,ℓ denote the number of those words counted by Ak,ℓ that end with j. It is

easy to see that for k ≥ 2 and i ≥ 1,

Ak,2i+1 =
k−1∑
j=1

Aj
k,2i+1.

By Lemma 3.2, for any word w ∈ S132
k,2i+1 whose last letter is j, the minimum letter of w

is also j. Thus, we have that
Aj

k,2i+1 = A1
k−j+1,2i+1,

where 1 ≤ j ≤ k − 1, because we can subtract j from each letter of any word counted by
Aj

k,2i+1. Moreover, for any word in S132
k−j+1,2i+1 ending with 1, we can remove 1 to form a

word of length 2i, which is also 132-avoiding. On the other hand, for any word S132
k−j+1,2i,

we can adjoin the letter 1 at the end to form a 132-avoiding word of length 2i+ 1. Thus,

A1
k−j+1,2i+1 = Ak−j+1,2i.

So, we obtain that

Ak,2i+1 =
k−1∑
j=1

Ak−j+1,2i =
k∑

j=2

Aj,2i.

Theorem 3.5. For k ≥ 2, let N132
k (x) =

∑
ℓ≥0 Ak,ℓx

ℓ be the generating function for N132
k,ℓ .

Then we have

N132
k (x) =

k∑
j=1

x+ δj,k
(1− x2)(1− 2x2) · · · (1− (j − 1)x2)

.
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Proof. Let

Ak(x) =
∑
i≥0

Ak,2ix
i.

By (8), it follows that

Ak(x) =
∑
i≥0

Ak,2ix
i

= 1 +
∑
i≥1

Ak−1,2ix
i + (k − 1)

∑
i≥1

Ak,2i−2x
i

= Ak−1(x) + (k − 1)xAk(x)

for k ≥ 2 and A1(x) = 1. This leads to the following well-known generating function for
Stirling numbers of the second kind, where k ≥ 1:

Ak(x) =
1

(1− x)(1− 2x) · · · (1− (k − 1)x)
.

From the definition of N132
k (x) as well as the fact Ak,1 = k, we have that

N132
k (x) =

∑
ℓ≥0

Ak,ℓx
ℓ

=
∑
i≥0

Ak,2ix
2i +

∑
i≥0

Ak,2i+1x
2i+1

= Ak(x
2) +

∑
i≥0

k∑
j=2

Aj,2ix
2i+1 + x

= Ak(x
2) + x

k∑
j=2

∑
i≥0

Aj,2ix
2i + x

= Ak(x
2) + x

k∑
j=2

Aj(x
2) + x

=
k∑

j=1

x+ δj,k
(1− x2)(1− 2x2) · · · (1− (j − 1)x2)

,

as desired. This completes the proof.

3.2 312-avoiding up-down words

In this subsection, we consider the enumeration of 312-avoiding up-down words, which is
similar to the enumeration of 132-avoiding up-down words done in Section 3.1. Table 3
provides the numbers N312

k,ℓ for small values of k and ℓ.

We begin with giving a description of 312-avoiding up-down words.
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k
ℓ

0 2 4 6 8

2 1 1 1 1 1
3 1 3 6 12 24
4 1 6 20 65 206
5 1 10 50 238 1080

k
ℓ

1 3 5 7 9

2 2 1 1 1 1
3 3 5 11 23 47
4 4 14 53 182 593
5 5 30 173 874 4089

Table 3: N312
k,ℓ for small values of k and ℓ.

Lemma 3.6. An up-down word w = w1w2 · · ·wℓ is 312-avoiding if and only if the top
elements of w are weakly increasing from left to right, i.e.,

t1 ≤ t2 ≤ · · · ≤ t⌊ ℓ
2
⌋.

Proof. For any up-down word w, if there exists 1 ≤ j ≤ ⌊ ℓ
2
⌋ − 1 such that tj > tj+1, then

tjbj+1tj+1 would be an occurrence of the pattern 312.

Conversely, if there is an occurrence wjwj+1wj+2 of the pattern 312 in w, where 1 ≤
j ≤ ℓ − 2, we would have wj+1 < wj+2 < wj. By definition of up-down words, wj+1

must be a bottom element in w, and wj and wj+2 must be top elements in w. But then
wj > wj+2.

For ℓ ≥ 2, let Bk,ℓ = N312
k,ℓ denote the number of 312-avoiding up-down words of length

ℓ over an alphabet [k]. Also, let Bk,0 = 1 and to simplify our calculations, we assume that
Bk,1 = k − 1.

First, we deal with the enumeration of Bk,2i+1.

Theorem 3.7. For k ≥ 2 and i ≥ 1, the numbers Bk,2i+1 satisfy the recurrence relation

Bk,2i+1 = Bk−1,2i+1 + (k − 1)Bk,2i−1 (10)

with the initial conditions B1,2i+1 = 0 for all i ≥ 1 and Bk,1 = k − 1 for all k ≥ 2.
Furthermore, if

Bk(x) =
∑
i≥0

Bk,2i+1x
i,

for k ≥ 1, then

Bk(x) =
k−1∑
j=1

1

(1− jx) · · · (1− (k − 1)x)
.

Proof. Our proof of (10) is similar to the proof of (8) considering subclasses of whether k
appears in w or not, and we omit it.
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By (10), we have

Bk(x) =
∑
i≥0

Bk,2i+1x
i

= k − 1 +
∑
i≥1

Bk−1,2i+1x
i + (k − 1)

∑
i≥1

Bk,2i−1x
i

= 1 +Bk−1(x) + (k − 1)xBk(x)

for k ≥ 2. Therefore,

Bk(x) =
Bk−1(x) + 1

1− (k − 1)x

with the initial condition B1(x) = 0.

Hence, for k ≥ 2, we have

Bk(x) =
1

(1− x)(1− 2x) · · · (1− (k − 1)x)
+

1

(1− 2x) · · · (1− (k − 1)x)
+ · · ·+ 1

1− (k − 1)x

=
k−1∑
j=1

1

(1− jx) · · · (1− (k − 1)x)
,

which completes the proof.

Now we turn our attention to the words of even length.

Theorem 3.8. For all k ≥ 2 and i ≥ 2, we have

Bk,2i =
k∑

j=2

Bj,2i−1.

Proof. Let Bj
k,ℓ denote the number of those words counted by Bk,ℓ that end with j for

ℓ ≥ 2. It is easy to see that for k ≥ 2 and i ≥ 2,

Bk,2i =
k∑

j=2

Bj
k,2i.

For any word w ∈ S312
k,2i whose last letter is j, by Lemma 3.6, the maximum letter of w is

also j. Thus, for 2 ≤ j ≤ k, we have that

Bj
k,2i = Bj

j,2i.

Moreover, for any word in S312
j,2i ending with j, we can remove j to form a word of

length 2i− 1, which is also 312-avoiding. On the other hand, for any word in S312
j,2i−1, we

can adjoin a letter j at the end to form a 312-avoiding word of length 2i. Thus,

Bj
j,2i = Bj,2i−1.
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So, we obtain that

Bk,2i =
k∑

j=2

Bj,2i−1,

which completes the proof.

Proposition 3.9. For k ≥ 2, let N312
k (x) = x +

∑
ℓ≥0 Bk,ℓx

ℓ be the generating function

for N312
k,ℓ . Then

N312
k (x) = 1 + x+

k∑
j=2

j−1∑
i=1

x2 + xδj,k
(1− ix2) · · · (1− (j − 1)x2)

.

Proof. From Theorem 3.8 together with the fact Bk,2 =
∑k

j=2Bj,1 =
(
k
2

)
, we obtain that

N312
k (x) = x+

∑
ℓ≥0

Bk,ℓx
ℓ

= x+
∑
i≥0

Bk,2ix
2i +

∑
i≥0

Bk,2i+1x
2i+1

= 1 + x+
∑
i≥1

k∑
j=2

Bj,2i−1x
2i + xBk(x

2)

= 1 + x+ x2

k∑
j=2

Bj(x
2) + xBk(x

2)

= 1 + x+
k∑

j=2

j−1∑
i=1

x2 + xδj,k
(1− ix2) · · · (1− (j − 1)x2)

.

This completes the proof.

3.3 213-avoiding or 231-avoiding up-down words

In what follows, we resume using Np
k,ℓ for the number of p-avoiding up-down words of

length ℓ over an alphabet [k].

Theorem 3.10. For all k ≥ 2 and i ≥ 0, we have

N213
k,2i+1 = N312

k,2i+1

and
N231

k,2i+1 = N132
k,2i+1.
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Proof. The equalities hold by applying the reverse operation to all words, which keeps
the property of being an up-down word.

For the case of the even lengths, we have the following result.

Theorem 3.11. For all k ≥ 2 and i ≥ 1, there is

N213
k,2i = N132

k,2i

and
N231

k,2i = N312
k,2i.

Proof. The statement follows by applying the complement and reverse operations which
turn an up-down word into an up-down word.

4 Enumeration of up-down words avoiding a vincular

pattern of length 3

In Section 3, we enumerated up-down words avoiding consecutive patterns of length 3,
which are a particular case of vincular patterns. In this section, we consider avoidance
of other vincular patterns of length 3 on up-down words. We divide patterns of the form
xyz into three subcases; in each subcase the proofs are similar.

4.1 132-avoiding or 312-avoiding up-down words

Similarly to our considerations above, we first give a description of 132-avoiding up-down
words.

Theorem 4.1. The following two statements hold:

(a) An up-down word w = w1w2 · · ·wℓ is 132-avoiding if and only if the bottom elements
of w are weakly decreasing from left to right, i.e.,

b1 ≥ b2 ≥ · · · ≥ b⌈ ℓ
2
⌉.

(b) An up-down word w is 132-avoiding if and only if w is 132-avoiding, and thus, for
k ≥ 2 and ℓ ≥ 0, we have

N132
k,ℓ = N132

k,ℓ ,

which is enumerated in Section 3.1.
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Proof. (a) If there were some j, 1 ≤ j ≤ ⌈ ℓ
2
⌉ − 1, such that bj < bj+1, then bjtjbj+1

would be an occurrence of the pattern 132.

Conversely, if in w there is an occurrence wj∗wjwj+1 of the pattern 132, where
1 ≤ j∗ < j ≤ ℓ − 1, we would have wj∗ < wj+1 < wj. According to the definition
of up-down words, wj must be a top element and wj+1 must be a bottom element
in w. If wj∗ is a bottom element, then there is wj∗ < wj+1 and the bottom element
wj∗ is to the left of the bottom element wj+1. If wj∗ is a top element, then there
is wj∗+1 < wj∗ < wj+1, and the bottom element wj∗+1 is to the left of the bottom
element wj+1.

(b) Combining Lemma 3.2 and (a), we get the desired result.

The enumeration of 312-avoiding up-down words is similar to that of 132-avoiding
up-down words, and we omit a proof of the following theorem leaving it to the interested
Reader.

Theorem 4.2. The following two statements hold:

(a) An up-down word w is 312-avoiding if and only if the top elements of w are weakly
increasing from left to right, i.e.,

t1 ≤ t2 ≤ · · · ≤ t⌊ ℓ
2
⌋.

(b) An up-down word w is 312-avoiding if and only if w is 312-avoiding. Thus, for all
k ≥ 2 and ℓ ≥ 0, we have

N312
k,ℓ = N312

k,ℓ .

4.2 231-avoiding or 213-avoiding up-down words

Our proof of the following lemma is very similar to the proof of Theorem 4.1 (a), and
thus is omitted.

Lemma 4.3. In a 231-avoiding up-down word, the bottom elements are weakly increasing
from left to right, i.e.,

b1 ≤ b2 ≤ · · · ≤ b⌈ ℓ
2
⌉.

Note that unlike Theorem 4.1 (a), we do not have “if and only if” statement in
Lemma 4.3 as demonstrated, e.g., by the word 12131.

The following theorem shows that avoidance of the pattern 231 is equivalent to avoid-
ance of the classical pattern 231 studied in [3].

Theorem 4.4. An up-down word w = w1w2 · · ·wℓ is 231-avoiding if and only if w is
231-avoiding.
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Proof. If w has an occurrence of the pattern 231 then it clearly has an occurrence of the
pattern 231. Thus, we just need to show that if w is 231-avoiding, then w is 231-avoiding.
Suppose that w is 231-avoiding, but there is an occurrence wj1wj2wj3 of the pattern 231
in w, that is, j1 < j2 < j3 and wj3 < wj1 < wj2 . Among all such occurrences, we can pick
one which has j3 − j1 minimum possible.

(a) If wj2 is a bottom element, then wj3 must be a top element by Lemma 4.3. Since
wj3−1 < wj3 , we have that wj2 ̸= wj3−1. But then, wj2 and wj3−1 are bottom elements
such that wj3−1 is to the right of wj2 and wj3−1 < wj2 contradicting Lemma 4.3.

(b) If wj2 is a top element, we have the following cases to consider. If j3 = j2 + 1, then
wj1wj2wj3 is an occurrence of the pattern 231, which is impossible. If j3 ≥ j2 + 2
and wj3 is a bottom element, according to the definition of up-down words and
Lemma 4.3, we have wj2+1 ≤ wj3 and thus wj1wj2wj2+1 is an occurrence of the
pattern 231; contradiction. Finally, if j3 ≥ j2 + 2 and wj3 is a top element, then
wj1wj2wj3−1 is an occurrence of the pattern 231 with wj1 and wj3−1 being closer to
each other than wj1 and wj3 contradicting our choice of wj1wj2wj3 .

The proof is completed.

The following statement is a direct corollary to Theorem 4.4.

Corollary 4.5. For all k ≥ 2 and ℓ ≥ 0, we have

N231
k,ℓ = N231

k,ℓ ,

which is enumerated in Theorem 2.1.

The enumeration of 213-avoiding up-down words is similar to that of 231-avoiding
up-down words. Here we list all the results about the former objects, omitting the proofs.

Theorem 4.6. The following two statements hold:

(a) In an up-down 213-avoiding word w, the top elements are weakly increasing from
left to right, i.e.,

t1 ≥ t2 ≥ · · · ≥ t⌊ ℓ
2
⌋.

(b) An up-down word w is 213-avoiding if and only if w is 213-avoiding. Thus, for all
k ≥ 2 and ℓ ≥ 0, we have

N213
k,ℓ = N213

k,ℓ ,

which is enumerated in Theorem 2.1.

Note that in Theorem 4.6 (a) we do not have an “if and only if” statement, as shown
by, e.g., the word 2313.
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4.3 123-avoiding or 321-avoiding up-down words

A description of 123-avoiding up-down words is as follows.

Lemma 4.7. An up-down word w = w1w2 · · ·wℓ is 123-avoiding if and only if

b1 ≥ b2 ≥ · · · ≥ b⌊ ℓ
2
⌋.

Proof. For any 123-avoiding up-down word w, if there exists 1 ≤ j ≤ ⌊ ℓ
2
⌋ − 1 such that

bj < bj+1, then bjbj+1tj+1 is an occurrence of the pattern 123, which is a contradiction.

Conversely, if there is an occurrence wj∗wjwj+1 of the pattern 123 in w, where 1 ≤
j∗ < j < ℓ, we would have wj∗ < wj < wj+1. According to the definition of up-down
words, wj must be a bottom element, and wj+1 must be a top element in w. If wj∗ is a
bottom element, then wj∗ is to the left of wj and wj∗ < wj. If wj∗ is a top element, then
the bottom element wj∗−1 ̸= wj is to the left of wj and wj∗−1 < wj.

This completes the proof.

We can now obtain the following enumerative result.

Theorem 4.8. The following two statements hold, where N132
k,ℓ is enumerated in Sec-

tion 3.1:

(a) For all k ≥ 2 and i ≥ 0, we have

S123
k,2i = S132

k,2i.

(b) For all k ≥ 2 and i ≥ 1, we have

N123
k,2i+1 = N132

k,2i+1 +
k−1∑
j=1

(
k − j

2

)
N132

k−j+1,2i−2.

Proof. (a) follows immediately from Lemmas 3.2 and 4.7.

For (b), there are two cases to consider:

• bi ≥ bi+1. These words are counted by N132
k,2i+1.

• bi < bi+1. Then, bi is the minimum element in w. Suppose that bi = j, where
1 ≤ j ≤ k − 1. Then the word w must be of the form w′jw′′, where w′ is a 123-
avoiding up-down word of length 2i− 2 over {j, j + 1, . . . , k}, and w′′ is a down-up
word of length 2 over {j + 1, . . . , k}. Thus, the words in question are counted by∑k−1

j=1

(
k−j
2

)
N132

k−j+1,2i−2.

This completes the proof.
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The case of enumeration of 321-avoiding up-down words is similar to that of 123-
avoiding up-down words conducted above. Thus, we omit our proof of the following
theorem.

Theorem 4.9. The following three statements hold, where N312
k,ℓ is enumerated in Sec-

tion 3.2:

(a) An up-down word w is 321-avoiding if and only if

t1 ≤ t2 ≤ · · · ≤ t⌊ ℓ−1
2

⌋.

(b) For all k ≥ 2 and i ≥ 0, we have

N321
k,2i+1 = N312

k,2i.

(c) For all k ≥ 2 and i ≥ 2, we have

N321
k,2i = N312

k,2i +
k∑

j=2

(
j − 1

2

)(
N312

j,2i−3 − δi,2

)
.

4.4 The remaining cases

The remaining enumeration cases for vincular pattern-avoiding up-down words are ob-
tained by applying the reverse and complement operations to our obtained results. We
record these cases in the following two theorems.

Theorem 4.10. For all k ≥ 2 and i ≥ 0, we have

N123
k,2i = N123

k,2i, N213
k,2i = N132

k,2i, N132
k,2i = N213

k,2i

and
N312

k,2i = N231
k,2i, N231

k,2i = N312
k,2i, N321

k,2i = N321
k,2i.

Theorem 4.11. For all k ≥ 2 and i ≥ 0, we have

N123
k,2i+1 = N321

k,2i+1, N213
k,2i+1 = N312

k,2i+1, N132
k,2i+1 = N231

k,2i+1

and
N312

k,2i+1 = N213
k,2i+1, N231

k,2i+1 = N132
k,2i+1, N321

k,2i+1 = N123
k,2i+1.
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5 Concluding remarks

In this paper, we not only enumerated all cases of length 3 vincular pattern-avoidance
on alternating words providing a link, e.g., to the Stirling numbers of the second kind,
but also discussed the structure of 123-avoiding up-down words of even length. As the
result, we provided an alternative, combinatorial proof of the fact that these words are
counted by the Narayana numbers. However, our combinatorial proof uses a bijection
between Dyck paths and certain equivalence classes on words in question, along with a
known relation on Narayana numbers. It is still desirable to solve the following problem.

Problem 1. Provide a direct combinatorial proof of the fact that 123-avoiding up-down
words of even length are counted by the Narayana numbers, namely, find a bijection send-
ing these words to Dyck paths.

Also, it would be interesting to describe the structure of 132-avoiding up-down words
of even length, e.g., via the notion of a cut-pair introduced in this paper, and possibly
provide an alternative proof of the fact that these words are counted by the Narayana
numbers, as was shown in [3]. We leave this as an open research direction.

Finally, there are many other types of patterns studied in the literature (see Chapter 1
in [7]) and one could study occurrences of these patterns on alternating words, which
should bring more links to known combinatorial structures.
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