Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Bio-tribocorrosion mechanisms in orthopaedic devices : mapping the micro-abrasion-corrosion behaviour of a simulated CoCrMo hip replacement in calf serum solution

Sadiq, Kamran and Black, Richard Anthony and Stack, Margaret (2014) Bio-tribocorrosion mechanisms in orthopaedic devices : mapping the micro-abrasion-corrosion behaviour of a simulated CoCrMo hip replacement in calf serum solution. Wear, 316 (1-2). 58–69. ISSN 0043-1648

[img]
Preview
PDF (SadiqStackBlack-WEAR-2014)
SadiqStackBlack_WEAR_2014.pdf - Preprint
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (3MB) | Preview

Abstract

Load bearing implant prostheses such as orthopaedic hip and knee implants may be considered as tribocorrosion systems since the wear processes are a result of combined mechanical and chemical mechanisms. The long-term success of implant prostheses depends on a number of factors, including age, body weight and activity levels. Pre-clinical testing is therefore crucial in determining the long-term performance, safety and reliability of the implant in-vivo. In this study CoCrMo alloy and UHMWPE couple was tested in a physiological solution of foetal calf serum (FCS) in 0.9 wt. % NaCl to assess the underlying wear mechanisms as a result of applied load (0-5N) and applied potential (-600, -400, -200, 0 and +200 mV). The transitioning behaviours due to micro-abrasion and corrosion were studied; corresponding micro-abrasion-corrosion wear maps were constructed to indicate the mass loss transitions in scope of wastage, mechanisms of wear and synergies between abrasion-corrosion for simulated hip contact conditions.