Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

An active whisking based remotely deployable NDE sensor

MacLeod, Charles Norman and Pierce, Stephen and Sullivan, J and Pipe, A and Dobie, Gordon and Summan, Rahul (2013) An active whisking based remotely deployable NDE sensor. IEEE Sensors Journal. ISSN 1530-437X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The fundamental sensitivity characterisation of a novel whisking sensor for applications in Non-Destructive Evaluation (NDE) is presented. Whisking sensors, originally developed for proximity detection applications in autonomous robotics, have been evaluated for measurements of surface roughness and surface form change. These surface parameters are representative of the typical changes associated with corrosion and surface breaking defects in real structures. The authors demonstrate that the whisking sensor can be used to accurately quantify surface roughness in the range 14-53 μm with excellent correlation (> 0.97) to a standard reference. Furthermore it is shown that that the sensor can detect 14mm diameter flat bottomed holes with depths ranging from 0.4 to 1.0 mm. In contrast to conventional ultrasonic and eddy current techniques, the sensor is insensitive to surface lift –off, producing an error of only 1.2% for lift-offs of several mm. This lift-off insensitivity is a highly desirable characteristic for real-world deployment of the sensors, and the authors describe how the sensor can be incorporated into autonomous inspection robots.