Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Depth profiling InGaN/GaN multiple quantum wells by Rutherford backscattering: the role of intermixing

Pereira, S.M.D.S. and Ferreira Pereira Lopes, E.M. and Alves, E. and Barradas, N.P. and O'Donnell, K.P. and Liu, C. and Deatcher, C.J. and Watson, I.M. (2002) Depth profiling InGaN/GaN multiple quantum wells by Rutherford backscattering: the role of intermixing. Applied Physics Letters, 81 (16). pp. 2950-2952. ISSN 0003-6951

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report a detailed compositional analysis of InxGa1-xN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition. Depth profiles of the InN fraction, x, in the MQWs were determined from grazing incidence Rutherford backscattering spectroscopy (RBS) analysis. Simulation of the RBS spectra provides precise estimations of individual well compositions, thickness, and the extent of In/Ga intermixing. It is ascertained that intermixing, and In segregation to the GaN cap layer, strongly increase with the value of x in the wells and with the number of periods in the MQW stack. Deleterious effects of intermixing on the spectral properties are apparent when comparing the photoluminescence spectra of two MQW structures with 8 and 18 wells, grown under the same nominal conditions.