Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Localization of excitation in InGaN epilayers

Kachkanov, V. and O'Donnell, K. P. and Pereira, S. and Martin, R. W. (2007) Localization of excitation in InGaN epilayers. Philosophical Magazine, 87 (13). pp. 1999-2017. ISSN 1478-6435

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Energy scalability of the excitation-emission spectra of InGaN epilayers, quantum wells and light-emitting diodes provided indirect evidence for a fundamental common cause of the remarkable optical properties of this commercially important semiconductor alloy. Phase segregation on the nanoscale ( accidental quantum dot formation) has generally been accepted as the mechanism of the spectral energy scaling ( K. P. O'Donnell, R. W. Martin and P. G. Middleton, Phys. Rev. Lett. 82 237 ( 1999)). Recently, however, the downsizing of the InN bandgap, from 2 to about 1 eV, has prompted a re-examination of the observations. Here, we present new structural evidence of InGaN nanostructure, obtained from a comparative analysis of Ga and In K-edge EXAFS ( extended X-ray absorption fine structure) of a wide range of InxGa1-xN epilayer samples. The mean In-Ga and Ga-In next-nearest-neighbour ( NNN) separations are found to be unequal in length for InN-poor ( 0.1 < x < 0.4) samples. The degree of inequality increases with decreasing InN fraction, x, and therefore correlates with luminescence efficiency in this range of alloy composition. We propose that the breakdown of In/Ga randomicity in InGaN alloys is associated with efficient excitation-emission in blue-green light-emitting devices. Although non-randomicity may lead to a weak quasi-localization of excitation, through the suppression of energy back-transfer, the issue of strong exciton localization in InGaN is not directly addressed by these results.