Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Reduced glutathione levels and expression of the enzymes of glutathione synthesis in cryopreserved hepatocyte monolayer cultures

Stevenson, D.J. and Morgan, C. and McLellan, L.I. and Grant, M.H. (2007) Reduced glutathione levels and expression of the enzymes of glutathione synthesis in cryopreserved hepatocyte monolayer cultures. Toxicology in Vitro, 21 (3). pp. 527-532. ISSN 0887-2333

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Cryopreservation of monolayers of hepatocytes in a freezing medium containing 10% (v/v) dimethylsulfoxide, 90% (v/v) foetal calf serum retains cell morphology and viability, but cells lose up to 50% of their intracellular reduced glutathione. This is accompanied by a small increase in glutamate cysteine ligase expression in cryopreserved cultures, but glutathione synthetase expression is undetectable post-cryopreservation. Inclusion of ascorbic acid and alpha-tocopherol in the freezing medium improves maintenance of reduced glutathione content post-cryopreservation at 84% of the levels in non-cryopreserved monolayer cultures, but does not restore glutathione synthetase expression. The inability to synthesise reduced glutathione will mean that cryopreserved hepatocyte monolayers are more susceptible to toxic insults.