Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Investigation of mixed element hybrid grid-based CFD methods for rotorcraft flow analysis

Whitehouse, Glen R. and Boschitsch, Alexander H. and Smith, Marlyn J. and Lynch, C. Eric and Brown, Richard (2010) Investigation of mixed element hybrid grid-based CFD methods for rotorcraft flow analysis. In: 66th American Helicopter Society Forum: Rising to New Heights in Vertical Lift Technology, 2010-05-11 - 2010-05-13.

[img]
Preview
PDF (strathprints027363.pdf)
strathprints027363.pdf

Download (1MB) | Preview

Abstract

Accurate first-principles flow prediction is essential to the design and development of rotorcraft, and while current numerical analysis tools can, in theory, model the complete flow field, in practice the accuracy of these tools is limited by various inherent numerical deficiencies. An approach that combines the first-principles physical modeling capability of CFD schemes with the vortex preservation capabilities of Lagrangian vortex methods has been developed recently that controls the numerical diffusion of the rotor wake in a grid-based solver by employing a vorticity-velocity, rather than primitive variable, formulation. Coupling strategies, including variable exchange protocols are evaluated using several unstructured, structured, and Cartesian-grid Reynolds Averaged Navier-Stokes (RANS)/Euler CFD solvers. Results obtained with the hybrid grid-based solvers illustrate the capability of this hybrid method to resolve vortex-dominated flow fields with lower cell counts than pure RANS/Euler methods.