Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Europium doping of zincblende GaN by ion implantation

Lorenz, K. and Roqan, I.S. and Franco, N. and O'Donnell, K.P. and Darakchieva, V. and Alves, E. and Trager-Cowan, C. and Martin, R.W. and As, D.J. and Panfilova, M. and , Fundacao para a Ciencia e Tecnologia (FCT), Portugal (Funder) and , HOYA Corporation (Funder) and , German Science Foundation (DFG) (Funder) (2009) Europium doping of zincblende GaN by ion implantation. Journal of Applied Physics, 105 (11). ISSN 0021-8979

[img]
Preview
PDF (jap.pdf)
jap.pdf - Final Published Version

Download (579kB) | Preview

Abstract

Eu was implanted into high quality cubic (zincblende) GaN (ZB-GaN) layers grown by molecular beam epitaxy. Detailed structural characterization before and after implantation was performed by x-ray diffraction (XRD) and Rutherford backscattering/channeling spectrometry. A low concentration (<10%) of wurtzite phase inclusions was observed by XRD analysis in as-grown samples with their (0001) planes aligned with the {111} planes of the cubic lattice. Implantation of Eu causes an expansion of the lattice parameter in the implanted region similar to that observed for the c-lattice parameter of wurtzite GaN (W-GaN). For ZB-GaN:Eu, a large fraction of Eu ions is found on a high symmetry interstitial site aligned with the < 110 > direction, while a Ga substitutional site is observed for W-GaN:Eu. The implantation damage in ZB-GaN:Eu could partly be removed by thermal annealing, but an increase in the wurtzite phase fraction was observed at the same time. Cathodoluminescence, photoluminescence (PL), and PL excitation spectroscopy revealed several emission lines which can be attributed to distinct Eu-related optical centers in ZB-GaN and W-GaN inclusions.