Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Optical and structural properties of Eu-implanted InxAl1−xN

Roqan, I.S. and O'Donnell, K.P. and Martin, R.W. and Trager-Cowan, C. and Matias, V. and Vantomme, A. and Lorenz, K. and Alves, E. and Watson, I.M. (2009) Optical and structural properties of Eu-implanted InxAl1−xN. Journal of Applied Physics, 106 (8). ISSN 0021-8979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Off-axis implantation of 80 keV Eu ions into epitaxial c-plane InAlN/GaN bilayers confines rare-earth (RE) doping largely to the InAlN layer. Rutherford backscattering spectrometry and x-ray diffraction show good correlations between the Eu3+ emission linewidth and key structural parameters of InxAl1−xN films on GaN in the composition range near lattice matching (x ∼ 0.17). In contrast to GaN:Eu, selectively excited photoluminescence (PL) and PL excitation spectra reveal the presence of a single dominant optical center in InAlN. Eu3+ emission from In0.13Al0.87N:Eu also shows significantly less thermal quenching than GaN:Eu. InAlN films are therefore superior to GaN for RE optical doping.