Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy

Docherty, F.T. and Monaghan, P.B. and McHugh, C.J. and Graham, D. and Smith, W.E. and Cooper, J.M. (2005) Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy. IEEE Sensors Journal, 5 (4). pp. 632-640. ISSN 1530-437X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Raman spectroscopy is a form of vibrational spectroscopy that is well suited to the molecular identification of a variety of analytes, including both explosives and biologicalagents. The technique has been gaining more widespread interest due to improvements in instrumentation, sensitivity, and its ease of use, in comparison to other techniques. In this paper, we describe recent advances in Raman spectroscopy with respect to the detection of high-energy explosives and biological materials. In particular, emphasis is placed on the exploitation of enhancement factors that overcome traditional limitations on sensitivity, namely, surface enhancement and resonance enhancement, functionalization of target analytes, and the use of novel lab-on-a-chip technology.