Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Role of molecular diagnostics in forensic science

Linacre, A.M.T. and Graham, D. (2002) Role of molecular diagnostics in forensic science. Expert Review of Molecular Diagnostics, 2 (4). pp. 346-353. ISSN 1473-7159

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Since the first use of DNA to identify the perpetrator of a murder in 1985, forensic science has witnessed dramatic changes in the field of human identification. The technology has altered by adopting novel methods developed originally for use in the field of medical genetics. Currently, millions of samples from blood, semen, hair and tissues are analyzed to determine the origin of the samples. The processes used at present rely on the separation of polymorphic DNA fragments by electrophoresis. Although rapid, this process represents a bottleneck in the automation of the process. Recent advances in chip-based techniques offer a rapid and highly automated solution, provided that the necessary DNA polymorphisms can be examined in this way. This review examines the immediate future of human identification and considers possible routes for future developments.