Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials

Afzaal, M. and Crouch, D.J. and O'Brien, P. and Raftery, J. and Skabara, P.J. and White, A.J.P. and Williams, D.J. (2004) The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials. Journal of Materials Chemistry, 14 (2). pp. 233-237. ISSN 0959-9428

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Reaction of NH((PPr2)-Pr-i)(2) with elemental selenium in concentrated solvent conditions enables large scale preparation and improved yields of NH((PSePr2)-Pr-i)(2) that may be deprotonated with sodium methoxide to give NaN((PSePr2)-Pr-i)(2). Treatment of the sodium salt with appropriate Group 11 metal salts in methanol yields a range of trinuclear complexes. The protic solvent conditions utilized facilitate the reduction of copper(II) salts resulting in the isolation of copper( I) complexes. These new Group 11 complexes have been characterised by H-1 and P-31 NMR and IR spectroscopy, APCI mass spectrometry, microanalysis and X-ray crystallography. Thermolytic decomposition of the copper( I) precursors in the presence of the indium precursor, In[((SePPr2)-Pr-i)(2)N](2)Cl, has been carried in the solid state using AA-MOCVD to give copper indium diselenide solid state materials CuInSe2.