Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats

Dufès, Christine and Olivier, Jean-Christophe and Gaillard, Frédéric and Gaillard, Afsaneh and Couet, William and Muller, Jean-Marc (2003) Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. International Journal of Pharmaceutics, 255 (1-2). pp. 87-97. ISSN 0378-5173

PDF (Dufes 2003)
Dufesetal2003VIPnasal.pdf - Final Published Version

Download (201kB) | Preview


The aim of this work was to study in rats the nasal route for the brain delivery of the vasoactive intestinal peptide (VIP) neuropeptide. After evaluating VIP stability in solutions obtained from nasal washes, the effect of formulation parameters (pH 4-9, 0-1% (w/v) lauroylcarnitine (LC), hypo- or isoosmolality) on the brain uptake of intranasally administered VIP (10(-8)M)/125I-VIP (300,000 cpm/ml) was studied, using an in situ perfusion technique. Brain radioactivity distribution was assessed by quantitative autoradiographic analysis. Results were compared to intravenously administered VIP. With a hypotonic formulation at pH 4 containing 0.1% LC and 1% bovine serum albumin, VIP stability was satisfactory and loss by adsorption was minimal. Using this formulation, around 0.11% of initial radioactivity was found in the brain after 30 min perfusion and was located in the olfactory bulbs, the midbrain and the cerebellum. HPLC analysis of brain and blood extracts demonstrated the presence of intact VIP in brain and its complete degradation in the blood compartment. By intravenous administration, no intact VIP was found either in brain or in blood. In conclusion, intact VIP could be delivered successfully to the brain using the intranasal route for administration.