Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Structural health monitoring of an annular component using a statistical approach

Mustapha, F. and Manson, G. and Pierce, S.G. and Worden, K. (2005) Structural health monitoring of an annular component using a statistical approach. Strain, 41 (3). pp. 117-127. ISSN 0039-2103

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

For aerospace components there is undoubtedly a critical need to detect incipient damage in the structure, as any microscopic crack or defect can potentially lead to catastrophic failure and loss of human life. This paper investigates the scattering of an ultrasonic-guided wave into a hollow cylinder-like structure, under both damaged and undamaged conditions. Hollow cylinder structures are widely used not only in aerospace components but also in other engineering applications. The wave was sequentially transmitted and captured by means of a 'real-time data-acquisition system' combined with integrated disc-shaped piezoceramic transducers. The integration of the tested structure and the transducers formed a structural health monitoring system. Wave responses were recorded from both of the structural conditions for the purpose of damage identification using a novelty detection method called 'outlier analysis'. The principal component analysis method of reducing the dimensionality of the feature space is also presented in this paper, with its main aim being to visualise how the data sets behave as a function of the structural conditions.