Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Digital compensation method for high frequency current probes

Li, Qingmin and Siew, W.H. and Stewart, Martin and Walker, Keith and Piner, Chris (2002) Digital compensation method for high frequency current probes. Measurement Science and Technology, 13 (4). pp. 529-532. ISSN 0957-0233

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Based on the steepest descent theory (Edmonson W, Srinivasan K, Wang C and Principe J 1997 IEEE Trans. Circuits Syst.45 379-84, Neil E and Mian O N 1992 IEEE Trans. Neural Netw.3 308-14) and the original response curve of a current probe used for power system electromagnetic compatibility measurement, an accurate analogue model has been built for the probe, with a maximum error of 5.2%. Before application the analogue model needs to be discretized in the z domain, however the digital model gives a steeper frequency response than the analogue one. To compensate for this effect, another digital band-pass filter was attached to the above model, and its parameters were obtained by computer simulation. The compensated digital model presented a maximum error of 5.8% compared with the probe's response curve. The digital modelling and compensating strategy can feasibly expand the frequency band over which the probe is useful for measurement applications.

Item type: Article
ID code: 7019
Keywords: digital modelling, steepest descent algorithms, filtering, steepest descent theory, Electrical engineering. Electronics Nuclear engineering, Instrumentation, Applied Mathematics
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 16 Oct 2008
    Last modified: 04 Sep 2014 14:59
    URI: http://strathprints.strath.ac.uk/id/eprint/7019

    Actions (login required)

    View Item