Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Coupling CFD and visualisation to model the behaviour and effect on visibility of small particles in air

Kelly, N.J. and Macdonald, I. (2004) Coupling CFD and visualisation to model the behaviour and effect on visibility of small particles in air. In: eSim2004, The Canadian Building Simulation Conference. European School for Industrial Mathematics (ESIM), pp. 153-160.

[img]
Preview
PDF (strathprints006592.pdf)
strathprints006592.pdf

Download (640kB) | Preview

Abstract

The use of computational fluid dynamics (CFD) and lighting simulation software is becoming commonplace in building design. This study looks at a novel linkage between these two tools in the visualization of droplets or particles suspended in air. CFD is used to predict the distribution of the particles, which is then processed and passed to the lighting simulation tool. The mechanism for transforming CFD contaminant concentration predictions to a form suitable for visual simulation is explained in detail and an example presented which demonstrates this linkage. The CFD-visualisation simulations described in this paper have applications in both automotive and fire safety through the modelling of fog and smoke respectively. Historically, smoke and fog effects have been rendered in images with no attempt at modelling physical reality. The novelty of the work presented in this paper is that, for the first time, an attempt is made to model both the fluid mechanics and optical physics of small particles suspended in a primary fluid.