Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Validity of Vegard's rule for Al1-xInxN (0.08<x<0.28) thin films grown on GaN templates

Magalhães, S and Franco, N and Watson, I M and Martin, R W and O'Donnell, K P and Schenk, H P D and Tang, F and Sadler, T C and Kappers, M J and Oliver, R A and Monteiro, T and Martin, T L and Bagot, P A J and Moody, M P and Alves, E and Lorenz, K (2017) Validity of Vegard's rule for Al1-xInxN (0.08<x<0.28) thin films grown on GaN templates. Journal of Physics D: Applied Physics, 50. ISSN 0022-3727

[img] Text (Magalhaes-etal-JPD-2017-Validity-of-Vegards-rule-for-Al1-xInxN-thin-film)
Magalhaes_etal_JPD_2017_Validity_of_Vegards_rule_for_Al1_xInxN_thin_film.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 29 March 2018.

Download (1MB) | Request a copy from the Strathclyde author


In this work, comparative x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) measurements allow a comprehensive characterization of Al1−x In x N thin films grown on GaN. Within the limits of experimental accuracy, and in the compositional range 0.08  <  x  <  0.28, the lattice parameters of the alloys generally obey Vegard's rule, varying linearly with the InN fraction. Results are also consistent with the small deviation from linear behaviour suggested by Darakchieva et al (2008 Appl. Phys. Lett. 93 261908). However, unintentional incorporation of Ga, revealed by atom probe tomography (APT) at levels below the detection limit for RBS, may also affect the lattice parameters. Furthermore, in certain samples the compositions determined by XRD and RBS differ significantly. This fact, which was interpreted in earlier publications as an indication of a deviation from Vegard's rule, may rather be ascribed to the influence of defects or impurities on the lattice parameters of the alloy. The wide-ranging set of Al1−x In x N films studied allowed furthermore a detailed investigation of the composition leading to lattice-matching of Al1−x In x N/GaN bilayers.