Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Studies of dynamic interactions in hybrid ac-dc grid under different fault conditions using real time digital simulation

Emhemed, A. and Adam, G. and Hong, Q. and Burt, G. (2016) Studies of dynamic interactions in hybrid ac-dc grid under different fault conditions using real time digital simulation. In: The 13th International Conference on AC and DC Power Transmission, 2017-02-14 - 2017-02-16, Midland Hotel. (In Press)

Text (Emhemed-etal-ACDC2017-Dynamic-interactions-in-hybrid-ac-dc-grid-under-different-fault-conditions)
Emhemed_etal_ACDC2017_Dynamic_interactions_in_hybrid_ac_dc_grid_under_different_fault_conditions.pdf - Accepted Author Manuscript

Download (478kB) | Preview


High Voltage Direct Current (HVDC) grid concept has recently been introduced as the next step to the point-to-point HVDC links to maximise the benefits of more power flow share, and reduce the impact of renewables intermittency. However, the integration of DC grid within existing AC systems is complex and very challenging. The compatibility between the two systems under different operating conditions needs to be fully understood. This will require sophisticated models and analysis of their behaviour using powerful tools. This paper presents a representative dynamic model of a hybrid AC-DC gird, and investigates the transient and dynamic interaction between the AC and DC grids under different fault conditions. The model represents a reduced AC UK power system interfaced to a detailed four-terminal DC grid. The developed mode is built in Real Time Digital Simulation (RTDS) using dual time steps simulation techniques.