Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Design and performance of ropes for climbing and sailing

McLaren, A.J. (2006) Design and performance of ropes for climbing and sailing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 220 (1). pp. 1-12. ISSN 1464-4207

PDF (strathprints005696.pdf)

Download (418kB) | Preview


Ropes are an important part of the equipment used by climbers, mountaineers, and sailors. On first inspection, most modern polymer ropes appear similar, and it might be assumed that their designs, construction, and properties are governed by the same requirements. In reality, the properties required of climbing ropes are dominated by the requirement that they effectively absorb and dissipate the energy of the falling climber, in a manner that it does not transmit more than a critical amount of force to his body. This requirement is met by the use of ropes with relatively low longitudinal stiffness. In contrast, most sailing ropes require high stiffness values to maximize their effectiveness and enable sailors to control sails and equipment precisely. These conflicting requirements led to the use of different classes of materials and different construction methods for the two sports. This paper reviews in detail the use of ropes, the properties required, manufacturing techniques and materials utilized, and the effect of service conditions on the performance of ropes. A survey of research that has been carried out in the field reveals what progress has been made in the development of these essential components and identifies where further work may yield benefits in the future.