Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Investigation into pulse sequence analysis of PD features due to electrical tree growth in epoxy resin

Sheng, Bojie and Catterson, Victoria M. and Rowland, Simon M. and Iddrissu, Ibrahim (2016) Investigation into pulse sequence analysis of PD features due to electrical tree growth in epoxy resin. In: 1st International Conference on Dielectrics, 2016-07-03 - 2016-07-07, Montpellier. (In Press)

Text (Sheng-etal-ICD2016-Investigation-into-pulse-sequence-analysis-of-PD-features-due-to-electrical-tree-growth)
Sheng_etal_ICD2016_Investigation_into_pulse_sequence_analysis_of_PD_features_due_to_electrical_tree_growth.pdf - Accepted Author Manuscript

Download (683kB) | Preview


Electrical trees developed using point-plane samples have been investigated under three different voltage conditions: AC, AC with positive DC bias, and AC with negative DC bias. Visual observations mainly indicate two types of electrical tree progression from initiation to breakdown: “forward and backward” (FB) trees and "forward" (F) trees. FB trees can be observed in AC tests, while F trees occur in AC with DC bias tests. The difference between AC with negative DC bias and AC with positive DC bias is the growth of a rapid long branch prior to breakdown under negative DC bias conditions. Based on the pulse sequence analysis (PSA) technique applied to the PD data associated with electrical tree growth, the findings confirm that PSA curves under different voltage tests have different regions and PSA features can be indicators of tree growth.