Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

TiO₂-coated electrodes for pulsed electric field treatment of microorganisms

Qin, Si and Timoshkin, Igor V. and MacLean, Michelle and MacGregor, Scott J. and Wilson, Mark P. and Given, Martin J. and Wang, Tao and Anderson, John G. (2016) TiO₂-coated electrodes for pulsed electric field treatment of microorganisms. IEEE Transactions on Plasma Science, 44 (10). pp. 2121-2128. ISSN 0093-3813

[img]
Preview
Text (Qin-etal-IEEE-TOPS-2016-electrodes-for-pulsed-electric-field-treatment-of-microorganisms)
Qin_etal_IEEE_TOPS_2016_electrodes_for_pulsed_electric_field_treatment_of_microorganisms.pdf - Accepted Author Manuscript

Download (735kB) | Preview

Abstract

Pulsed electric fields (PEF) can cause irreversible damage to bio-membranes and may result in inactivation of microorganisms. The aim of this paper is to investigate the PEF treatment of the yeast Saccharomyces cerevisiae, using a novel treatment cell with parallel-plane electrodes coated with a 2 µm thin TiO2 film. Two different PEF waveforms, square and exponential, with magnitudes of 67 kV/cm and 80 kV/cm, were used in this study. The efficacy of the PEF treatment was assessed by comparison of the surviving treated and untreated yeast populations, and it was shown that a treatment cell with TiO2-coated electrodes can be successfully used for the PEF treatment of microorganisms: 3-log10 reduction in the yeast population was achieved with 100 impulses. The energy efficacy of the PEF process in the proposed treatment cell has been compared with the energy losses in the PEF treatment cell with uncoated, conductive electrodes. It is shown that the electrodes coated with TiO2 provide better performance as compared with the traditional uncoated electrodes.