Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Measurement considerations of peak stepping cadence measures using national health and nutrition examination survey 2005-2006

Kang, Minsoo and Kim, Youngdeok and Rowe, David A. (2016) Measurement considerations of peak stepping cadence measures using national health and nutrition examination survey 2005-2006. Journal of Physical Activity and Health, 13 (1). pp. 44-52. ISSN 1543-3080

[img]
Preview
Text (Kang-Kim-Rowe-JPAH2016-measurement-considerations-of-peak-stepping-cadence-measures)
Kang_Kim_Rowe_JPAH2016_measurement_considerations_of_peak_stepping_cadence_measures.pdf - Accepted Author Manuscript

Download (610kB) | Preview

Abstract

Background: This study examined the optimal measurement conditions to obtain reliable peak cadence measures using the accelerometerdetermined step data from the National Health and Nutrition Examination Survey 2005-2006. Methods: A total of 1282 adults (> 17 years) who provided valid accelerometer data for 7 consecutive days were included. The peak 1-and 30-minute cadences were extracted. The sources of variance in peak stepping cadences were estimated using Generalizability theory analysis. A simulation analysis was conducted to examine the effect of the inclusion of weekend days. The optimal number of monitoring days to achieve 80% reliability for peak stepping cadences were estimated. Results: Intraindividual variability was the largest variance component of peak cadences for young and middle-aged adults aged < 60 years (50.55%-59.24%) compared with older adults aged < 60 years (31.62%-41.72%). In general, the minimum of 7 and 5 days of monitoring were required for peak 1-and 30-minute cadences among young and middle-aged adults, respectively, whereas 3 days of monitoring was sufficient for older adults to achieve the desired reliability (0.80). The inclusion of weekend days in the monitoring frame may not be practically important. Conclusions: The findings could be applied in future research as the reference measurement conditions for peak cadences.