Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Non-linear predictive generalised minimum variance state-dependent control

Grimble, Michael and Majecki, Pawel (2015) Non-linear predictive generalised minimum variance state-dependent control. IET Control Theory and Applications. pp. 2438-2450. ISSN 1751-8644

[img]
Preview
Text (Grimble-Majecki-IET-CTA-2015-Non-linear-predictive-generalised-minimum-variance-state)
Grimble_Majecki_IET_CTA_2015_Non_linear_predictive_generalised_minimum_variance_state.pdf - Accepted Author Manuscript

Download (552kB) | Preview

Abstract

A non-linear predictive generalised minimum variance control algorithm is introduced for the control of nonlinear discrete-time state-dependent multivariable systems. The process model includes two different types of subsystems to provide a variety of means of modelling the system and inferential control of certain outputs is available. A state dependent output model is driven from an unstructured non-linear input subsystem which can include explicit transport delays. A multi-step predictive control cost function is to be minimised involving weighted error, and either absolute or incremental control signal costing terms. Different patterns of a reduced number of future controls can be used to limit the computational demands.