Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Model predictive and linear quadratic Gaussian control of a wind turbine

Hur, S. and Leithead, W. E. (2016) Model predictive and linear quadratic Gaussian control of a wind turbine. Optimal Control Applications and Methods. ISSN 0143-2087

[img]
Preview
Text (Hur-Leithead-OCAM2016-model-predictive-and-linear-quadratic-gaussian-control-of-a-wind-turbine)
Hur_Leithead_OCAM2016_model_predictive_and_linear_quadratic_gaussian_control_of_a_wind_turbine.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Model predictive and linear quadratic Gaussian controllers are designed for a 5MW variable-speed pitch-regulated wind turbine for three operating points – below rated wind speed, just above rated wind speed, and above rated wind speed. The controllers are designed based on two different linear dynamic models (at each operating point) of the same wind turbine to study the effect of utilising different control design models (i.e. the model used for designing a model-based controller) on the control performance. The performance of the LQG controller is enhanced by improving the robustness, achieved by replacing the Kalman filter with a modified Luenberger observer, whose gain is obtained to minimise the effect of uncertainty and disturbance.