Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

An experimental approach to analysing rain droplet impingement on wind turbine blade materials

Siddons, Craig and Macleod, Calum and Yang, Liu and Stack, Margaret (2015) An experimental approach to analysing rain droplet impingement on wind turbine blade materials. In: EWEA 2015 Annual Event, 2015-11-17 - 2015-11-20, Paris expo Porte de Versailles.

[img]
Preview
Text (Siddons-etal-EWEA2015-analysing-rain-droplet-impingement-on-wind-turbine-blade-materials)
Siddons_etal_EWEA2015_analysing_rain_droplet_impingement_on_wind_turbine_blade_materials.pdf - Accepted Author Manuscript

Download (4MB) | Preview

Abstract

Leading edge erosion of wind turbine blades is an important issue within the industry and has been found to have a substantial impact on the annual energy output of generators. This forces operators to make blade repair a necessity, adding to the operation and maintenance costs of a project. A wind turbine’s tip speed can in some cases have an upper limit based on the erosion exhibited on the leading edge. This paper explores the variables of rainfall rate and impact velocity of the impinging droplets in an attempt to explore the recovery time of the tri-axial composite material used. It is shown that an increase in impact velocity results in a higher mass loss than an increase in the rainflow rate. Analysis using a scanning electron microscope reveals that pin holes in the laminate surface are exploited by the droplets, acting as initiation point for erosion of the composite. Overall the results suggest that the tip speed of the wind turbine blade is of greater importance when compared to the relevant rainfall conditions as to where the wind turbine is situated.