Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Very-short-term probabilistic wind power forecasts by sparse vector autoregression

Dowell, Jethro and Pinson, Pierre (2016) Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Transactions on Smart Grid, 7 (2). pp. 763-770. ISSN 1949-3053

[img]
Preview
Text (Dowell-Pinsen-IEEE-TSG-2015-Very-short-term-probablistic-wind-power)
Dowell_Pinsen_IEEE_TSG_2015_Very_short_term_probablistic_wind_power.pdf - Accepted Author Manuscript

Download (616kB) | Preview

Abstract

A spatio-temporal method for producing very-short-term parametric probabilistic wind power forecasts at a large number of locations is presented. Smart grids containing tens, or hundreds, of wind generators require skilled very-short-term forecasts to operate effectively, and spatial information is highly desirable. In addition, probabilistic forecasts are widely regarded as necessary for optimal power system management as they quantify the uncertainty associated with point forecasts. Here we work within a parametric framework based on the logit-normal distribution and forecast its parameters. The location parameter for multiple wind farms is modelled as a vector-valued spatio-temporal process, and the scale parameter is tracked by modified exponential smoothing. A state-of-the-art technique for fitting sparse vector autoregressive models is employed to model the location parameter and demonstrates numerical advantages over conventional vector autoregressive models. The proposed method is tested on a dataset of 5 minute mean wind power generation at 22 wind farms in Australia. 5-minute-ahead forecasts are produced and evaluated in terms of point and probabilistic forecast skill scores and calibration. Conventional autoregressive and vector autoregressive models serve as benchmarks.