Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The influence of central neuropathic pain in paraplegic patients on performance of a motor imagery based brain computer interface

Vuckovic, A. and Hasan, M.A. and Osuagwu, B. and Fraser, M. and Allan, D.B. and Conway, B.A. and Nasseroleslami, B. (2015) The influence of central neuropathic pain in paraplegic patients on performance of a motor imagery based brain computer interface. Clinical Neurophysiology, 126 (11). pp. 2170-2180. ISSN 1388-2457

[img]
Preview
Text (Vuckovic-etal-CN-2015-The-influence-of-central-neuropathic-pain-in-paraplegic-patients)
Vuckovic_etal_CN_2015_The_influence_of_central_neuropathic_pain_in_paraplegic_patients.pdf - Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

The aim of this study was to test how the presence of central neuropathic pain (CNP) influences the performance of a motor imagery based Brain Computer Interface (BCI). In this electroencephalography (EEG) based study, we tested BCI classification accuracy and analysed event related desynchronisation (ERD) in 3 groups of volunteers during imagined movements of their arms and legs. The groups comprised of nine able-bodied people, ten paraplegic patients with CNP (lower abdomen and legs) and nine paraplegic patients without CNP. We tested two types of classifiers: a 3 channel bipolar montage and classifiers based on common spatial patterns (CSPs), with varying number of channels and CSPs. Paraplegic patients with CNP achieved higher classification accuracy and had stronger ERD than paraplegic patients with no pain for all classifier configurations. Highest 2-class classification accuracy was achieved for CSP classifier covering wider cortical area: 82 ± 7% for patients with CNP, 82 ± 4% for able-bodied and 78 ± 5% for patients with no pain. Presence of CNP improves BCI classification accuracy due to stronger and more distinct ERD. Results of the study show that CNP is an important confounding factor influencing the performance of motor imagery based BCI based on ERD.