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� Motor imagery based BCI-classifier built on EEG data of paraplegic patients, gives higher classification
accuracy in patients with central neuropathic pain compared to patients with no chronic pain.

� Higher BCI classification accuracy in paraplegic patients with central neuropathic pain is accompanied
with stronger event related desynchronisation during motor imagery.

� BCI classification accuracy between feet and a hand was comparable with classification accuracy
between hands, in all three groups of participants.

a b s t r a c t

Objective: The aim of this study was to test how the presence of central neuropathic pain (CNP) influ-
ences the performance of a motor imagery based Brain Computer Interface (BCI).
Methods: In this electroencephalography (EEG) based study, we tested BCI classification accuracy and
analysed event related desynchronisation (ERD) in 3 groups of volunteers during imagined movements
of their arms and legs. The groups comprised of nine able-bodied people, ten paraplegic patients with
CNP (lower abdomen and legs) and nine paraplegic patients without CNP. We tested two types of classi-
fiers: a 3 channel bipolar montage and classifiers based on common spatial patterns (CSPs), with varying
number of channels and CSPs.
Results: Paraplegic patients with CNP achieved higher classification accuracy and had stronger ERD than
paraplegic patients with no pain for all classifier configurations. Highest 2-class classification accuracy
was achieved for CSP classifier covering wider cortical area: 82 ± 7% for patients with CNP, 82 ± 4% for
able-bodied and 78 ± 5% for patients with no pain.
Conclusion: Presence of CNP improves BCI classification accuracy due to stronger and more distinct ERD.
Significance: Results of the study show that CNP is an important confounding factor influencing the
performance of motor imagery based BCI based on ERD.
� 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Spinal cord injury may cause paralysis leaving a person highly
dependent on their caregivers for most basic activities of daily liv-
ing (Field-Fotte, 2009). Therefore various assistive devices have
been used to improve patients’ independence and quality of life
(Poduri and Cesarz, 2009). In the recent years, assistive and reha-
bilitation devices based on Brain Computer Interface (BCI) have
been intensively explored, due to their capacity to promote com-
bined neurological and physical recovery (Dobkin, 2007; Roset
et al., 2013).

Motor imagery (MI) has been a frequently used BCI strategy
which can be applied for controlling assistive devices
(Pfurtscheller et al., 2000; Kauhanen et al., 2006; Leeb et al.,
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2007) and for rehabilitation of SCI patients with incomplete injury
and stroke, that have partially preserved movements (Roset et al.,
2013; Pfurtscheller et al., 2009; Daly et al., 2009; Tam et al., 2011;
Onose et al., 2012). However, there are two major challenges in
using MI-BCI in SCI patients: reduced brain activity and reorganisa-
tion of somatosensory-cortex (Kokotilo et al., 2009); both affecting
the BCI performance. Several BCI studies (Pfurtscheller et al., 2000,
2009) showed that compared to the able-bodied, SCI patients have
distinctive activation patters and reduced event related desynchro-
nisation during MI causing poor performance of a BCI classifier.
Multiple imaging studies demonstrated the reorganisation of the
sensory-motor cortex, causing the posterior shift of the maximum
activity and modification of the level of cortical activity during
imagined or attempted movements (Green et al., 1999; Tran
et al., 2004; Kokotilo et al., 2009; Jurkiewicz et al., 2010;
Vuckovic et al., 2014).

Within the BCI community it is widely accepted that the main
cause of these changes is a disuse reorganisation of the cortex
caused by paralysis (Kauhanen et al., 2006; Pfurtscheller et al.,
2009). Although paralysis is the most obvious effect of the injury,
SCI is a complex injury with multiple primary and secondary con-
sequences (Field-Fotte, 2009). It is therefore possible that some
secondary consequences of SCI which contribute to the reorganisa-
tion of the cortex also affect performance of MI based BCI. One of
the most frequent secondary consequences of SCI is chronic pain.
A very common subtype of the chronic pain, severely affecting
around 40% of SCI population, is central neuropathic pain (CNP)
(Siddall et al., 2003; Watson, 2008). CNP is caused by an injury
to the somato-sensory system (Haanpaa et al., 2011) but can
appear months or years post-injury. An explanation for the origin
of CNP is the thalamo-cortical dysrhythmia following the injury
(Sarnthein and Jeanmonod, 2008), suggesting that CNP is gener-
ated in the brain rather than in the body (Apkarian et al., 2009;
Haanpaa et al., 2011; Henderson et al., 2013). Although the origin
of CNP is within the central nervous system, it is perceived as com-
ing from the paralysed limbs (Haanpaa et al., 2011). In SCI patients
CNP is manifested as a chronic pain below the level of the injury,
described as burning, tingling stabbing, shooting or aching sensa-
tion (Siddall et al., 2003; Baastrup and Finnerup, 2008). A thermo-
sensory inhibition hypothesis (Craig, 2002), explains CNP as a
thermoregulatory dysfunction, that is further supported by a burn-
ing sensations, often reported by patients with CNP.

CNP equally affects patients with complete and with incom-
plete SCI injury (Siddall et al., 2003). It also affects other groups
of potential BCI users like stroke patients (8%) (Andersen et al.,
1995) and is very frequent in amputees (80%) (Flor, 2002), patients
with multiple sclerosis (27%) (Osterberg et al., 2005) and Parkin-
son’s disease (10%) (Beiske et al., 2009).

Evidence for correlation between CNP and reorganisation of the
sensorimotor cortex has been shown by many studies (Flor, 2002;
Gustin et al., 2010a; Wrigley et al., 2009) where, due to sensory
loss caused by the injury, the affected cortical somatotopy under-
goes re-mapping or reorganisation, proportional to the intensity
of pain. On the contrary, Makin et al. (2013) showed that in persons
who suffer from CNP due to amputation, the sensory-motor cortex
undergoes less reorganisation than in amputees with no pain. This
result indicates that it is possible to distinguish between the effects
of sensory loss and pain initiated by trauma leading to sensory loss.

While the areas of the brain involved in processing of pain nor-
mally do not involve the primary motor cortex (Apkarian et al.,
2009; Jensen, 2010), fMRI studies demonstrated that the presence
of CNP in SCI patients causes an increased activation of the primary
motor cortex during imagination of movements (Gustin et al.,
2010a; Wrigley et al., 2009). EEG studies of spontaneous brain
activity also showed the increased power of the theta band and a
shift of the dominant alpha peak frequency towards the theta band
in paraplegic and other groups of patients suffering from CNP
(Boord et al., 2008; Sarnthein et al., 2006; Stern et al., 2006;
Jensen et al., 2013; Vuckovic et al., 2014). Evidence of correlation
between CNP and the level of the brain activity has been shown
in our previous study (Vuckovic et al., 2014): we defined spontane-
ous and dynamic EEG signatures of CNP by comparing responses of
paraplegic patients with CNP, paraplegic patients with no CNP and
able-bodied people in relaxed state and during cue-based MI task.
Results of that study showed that patients with CNP had strongest
and spatially distinctive event related desynchronisation (ERD)
during MI in the theta, alpha and beta frequency bands, with max-
imum activity shifted posteriorly. Theta band desynchronisation
during motor imagination was a singular feature of patients with
CNP. Patients with no CNP had weakest ERD, that has spatial
topography comparable to those of the able-bodied group.

Given the previously mentioned evidence regarding the role of
CNP, there is a possibility that performances of a MI-based BCI,
which uses ERD based features, may not only vary between paral-
ysed and able bodied people, but importantly between paralysed
people with and without CNP. It should be noted that in previous
reports (Gustin et al., 2008, 2010b) the effect of motor imagery
on CNP was not analysed for the purpose of BCI, so the effect of
CNP on BCI performance is unknown. From a BCI perspective
increased cortical activity during MI in patients with CNP is a desir-
able feature as it implies that better classification accuracy might
be achieved. However, a study on SCI patients with CNP who prac-
ticed motor imagery for several weeks showed that prolonged
imagination of movements of a painful part of the body worsens
pain, i.e. MI is able to produce painful sensation without a periph-
eral input (Gustin et al., 2008, 2010b). Equally important is to ques-
tion whether MI as practiced for BCI has an adverse effect on CNP.

The aim of this EEG-based study was to test whether the pres-
ence of CNP in paraplegic patients influences the performance of
MI based BCI. We compared performances of BCI classifiers and
the accompanying ERS/ERD responses between three groups: able
bodied people, paraplegic patients with no pain and paraplegic
patients with CNP. These results are potentially also relevant for
other patient groups suffering from CNP, e.g. stroke patients, who
are typical BCI candidates.
2. Methods

2.1. Participants

Three groups of age-matched adults (age between 18 and 55)
were recruited. The groups were:

1. Ten paraplegic patients (3F, 7M age 46.2 ± 9.4), with diagnosed
CNP below the level of injury, referred to as Patients With Pain
(PWP),

2. Nine paraplegic patients with no chronic pain (2F, 7M age
43.8 ± 9.1), referred to as Patients with No Pain (PNP),

3. Nine able bodied volunteers with no chronic pain (3F, 6M age
39.6 ± 10.2) referred to as Able Bodied (AB).

The neurological level of SCI was determined using the Ameri-
can Spinal Injury Association (ASIA) impairment classification
(.Marino et al., 2003). Injury level A means the loss of motor and
sensory functions while level B means the loss of motor function
with some sensations preserved. All SCI patients were at least
1 year post injury and had a spinal lesion at or below T1. The inclu-
sion criteria for patients with CNP was a positive diagnosis of CNP,
reported pain level P5 on the Visual Numerical Scale (VNS ranging
from 0 to 10, 0 meaning no pain and 10 meaning worst pain imag-
inable) and a treatment history of CNP for at least 6 months. The



Table 2
Information about Patients with No Pain (PNP group).

Nr Level of injury ASIA Years after injury

1 T7 A 7
2 T7 B 7
3 T12 A 7
4 L1 A 6
5 T2 A 2
6 T5 B 15
7 T11 A 11
8 T4 A 9
9 T7 A 15
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general exclusion criteria for all three groups were a presence of
any chronic (non CNP) or acute pain at the time of the experiment;
brain injury or other known neurological condition that would
affect EEG interpretation or would prevent patients from under-
standing the experimental task. Prior to the experiment patients
were asked to fill out the brief pain inventory (Daut et al., 1983)
to assess the intensity (based on a VNS) and location of pain. Infor-
mation on Patients With Pain (PWP) and Patients with No Pain
(PNP) is shown in Tables 1 and 2. The exact location of perceived
pain in each patient is shown in Fig. 1. All patients had pain under
the level of injury, that was bilateral in 8 out of 10 patients. In some
patients pain was also present over the lower abdomen and but-
tock. In all patients pain was present in shanks and feet.

The ethical approval was obtained from the University of
Strathclyde Ethical Committee for the able-bodied group and from
National Health Service Ethical Committee for Greater Glasgow
and Clyde for patients’ groups. Informed consent was obtained
from all participants. The same groups of patients were used in
our previous study to describe dynamic signature of CNP
(Vuckovic et al., 2014).

2.2. Recording equipment

EEG was recorded from 61 channels using the Synamps2,
(Neuroscan, USA) system. Electrodes were placed according to
standard 10-10 locations (ACNS, 2006) using an ear-linked refer-
ence and AFz ground. Electrooculagram (EOG) was recorded from
3 channels around the right eye. All channels were sampled at
1000 Hz. Individual electrode impedances were below 5 kO. In
addition, electromyograms (EMGs) were recorded from the right
and the left wrist extensor muscles and right foot dorsiflexor using
the bipolar inputs to the Synamps2 device. The purpose of EMG
recording was to check for the absence of any evidence of volun-
tary movements when subjects attempted MI.

2.3. Experimental procedures

An experimental protocol that instructed participants to imag-
ine hand or lower limb movements was devised using visual cues.
Participants were seated at a desk, approximately 1.5 m in front of
a computer monitor. Participants were instructed to look at the
centre of the monitor and were instructed to respond to a sequence
of visual cues. The cues comprised at t = �1 s, a readiness cue (a
cross +) which remained on for 4 s (Fig. 2). At t = 0 s an initiation
cue, presented as an arrow, was displayed for 1.25 s, pointing to
the left , to the right ? or down ; and corresponded to imagina-
tion of the left hand waving (LH), right hand waving (RH) and
tapping with both feet (F), respectively. Participants were asked
to continue to perform imaginary movements until the cross disap-
peared from the screen (3 s after the initiation cue appeared). This
is a standard experimental paradigm for discrimination between
imagined movements between different limbs (Pfurtscheller
Table 1
Information about patients with CNP (PWP group).

Nr Level of injury ASIA Years after injury Pai

1 T5 A 7 7
2 T5/6 A 11 6
3 T5 A 7 8
4 L1 B 15 7
5 T7 B 6 8
6 T6/7 B 25 10
7 T1 A 25 5
8 T5 A 14 5
9 L1 B 5 5

10 T8 B 11 1
et al., 2006, 2009; Blankertz et al., 2007). Separate imagination of
the left and right feet is typically not performed, due to the ana-
tomical location of the motor areas of left and right feet, which
lie in close proximity, deeper in the central sulcus and would
therefore be hard to distinguish using a classifier (Bear et al., 2007).

In PNP group, RH and LH were non-paralysed parts of the body
while F were paralysed. None of the limbs were painful. In PWP
group, RH and LH were non-paralysed and non-painful parts of
the body while F were both a paralysed and painful part of the
body.

In total 60 trials of each movement type (180 trials in total)
were collected from the subjects with randomised cue sequences.
The whole session consisted of 6 sub-sessions with rest periods
in-between. In each sub-session 10 trials of each type (30 trials
in total) were presented to subjects. We collected relatively a small
number of trials (60 for each limb) because of PWP group who
could not successfully concentrate on a longer experiment.
2.4. Data pre-processing

For pre-processing of spontaneous EEG, a high-pass filter (IIR,
12 db cut off frequency) was set to 1 Hz and a notch filter (IIR,
12 db cut off frequency) was applied between 48 and 52 Hz, to
remove line noise at 50 Hz. Filtering was applied forwards and
then backwards to avoid phase shift. Signals were then down-
sampled to 250 Hz. EEG was visually inspected and epochs con-
taining EOG artefact and other types of noise (amplitude exceeding
approximately 100 lV over all channels) were manually removed.
After removing heavily contaminated epochs, signals were
exported to EEGLAB (Delorme and Makeig, 2004). Independent
Component Analysis (ICA) was performed using the infomax algo-
rithm (Bell and Sejnowski, 1995) implemented in EEGLAB for
advanced noise removing purposes. ICAs representing noise was
detected based on their power spectral density, time distribution,
scalp maps and dipole localisation. In this way excessive EEG
removal from a limited number of trials was avoided, as no more
than 2 (out of 60) trials had to be removed per dataset of a single
n VNS Years with pain Medications

7 Baclofen Carbamazepine Gabapentin
11 –

7 Pregabalin Gabapentin
15 Gabapentin

5 –
24 Gabapentin
10 Pregabalin
13 Amitriptyline, Baclofen, Diazepams

4 –
10 Pregabalin



Fig. 1. Body maps showing perceived location pain in patients in PWP group.

Fig. 2. The experimental paradigm for a motor imagination task.
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limb. After noise removal data were converted back to EEG domain
for further analysis.
Iz

Fig. 3. Location of a smaller set of electrodes used to build a CSP1 classifier (black
dots only) and a larger set used to build a CSP2 classifier (black and grey dots). All
61 electrodes (including the ones with white circles) were included when creating
ERS/ERD scalp maps.
2.5. Classification of motor imageries

We performed classification between the following two tasks:
right hand vs left hand, right hand vs feet and left hand vs feet.
We used bipolar montages and common spatial patterns (CSPs)
montages. All montages were derived from the original 61 elec-
trodes recorded with respect to the ear-linked reference. A simple
bipolar montage consisted of three bipolar electrodes located over
the centro-parietal cortex. Common spatial patterns were calcu-
lated over two different set of electrodes, namely CSP1 and CSP2.
CSP1 consisted of 23 electrodes covering mainly the sensory and
motor areas (Fig. 3, dark circles) and CSP2 consisted of 44 elec-
trodes (Fig. 3. dark and grey circles) covering a wider cortical net-
works involved in pain processing. The number of CSPs in CSP1
varied from 2 to 22 to test the influence of the number of CSPs
on the classification accuracy and on a difference in classification
accuracies across three groups of participants. While we expected
that increasing the number of electrodes used for BCI classifier will
improve its classification accuracy we wanted to test whether this
improvement will increase proportionally across all three groups.
2.6. Bipolar montage feature selection and classification

Three bipolar montages were derived: C3–P3, C4–P4 and Cz–Pz.
A slightly posterior location was chosen because it is known that
SCI causes a posterior shift of the area of strongest activity during
MI (Kokotilo et al., 2009).
Signal was filtered in 8–12 Hz and 16–24 Hz bands using an IIR
Butterworth filter of the 5th order. Signal was then squared and
smoothed/averaged over one second window. The logarithm of
the resulting signal was obtained and used for classification. This
provided 6 features in total used to build a BCI classifier. Each trial,
from t = 0 s (an arrow, i.e. the initiation cue appears) till t = 3 s (a
cross, i.e. the readiness cue disappears) was split into smaller seg-
ments of 0.4 s.

Feature classification was performed using a Fisher’s Linear Dis-
criminate Analysis (LDA) (Duda et al., 2001). A leave-one-out cross
validation procedure was adopted because of a relatively small
number of trials. Initial classification was performed on each of
the 0.4 s segment to estimate the best performing segment across
the trials. LDA classifier was then computed using a training set
from the chosen segment. Each trial was assigned a class by classi-
fying each time point in the trial using the LDA classifier. A true
positive rate (the ratio of correctly classified trials to the total num-
ber of trials) was adopted as a measure of the classification accu-
racy. Signal processing was performed using the BioSig open
source toolboxes (Vidaurre et al., 2011) in MATLAB (Mathworks
Inc., USA).
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2.7. Common spatial patterns

Before computing CSPs, the recorded signal was band-pass fil-
tered using an IIR Butterworth filter of the 5th order filter between
8 and 30 Hz. The CSP method projects multi-channel EEG data into
a low-dimensional spatial sub-space in such a way that the vari-
ances of the filtered time series are optimal for discrimination
(Müller-Gerking et al., 1999). After computing the spatial filters
and using it to filter the signal, the variance of the resultant signal
was computed for every time segment of 70 samples (approximately
30 ms) over the whole 3 s trial. Classification was performed in the
manner described in methods for bipolar arrangement.

2.8. Statistical analysis of classification results

For each classifier, a two factor 3 � 3 ANOVA was used to com-
pare classification results between three groups; this was followed
by an unpaired t-test. The two factors were ‘motor imagery types’
RH, LH and F and ‘groups’ were PWP, PNP and AB. A statistical sig-
nificance was set at A = 0.05.

2.9. EEG analysis of motor imagery

Before performing the analysis, EEG data were re-referenced to
the average reference. A ‘Study’ structure was designed in EEGLAB
to allow EEG analysis on a group level. ‘Groups’ were PWP, PNP and
AB and ‘Conditions’ were motor imagery of LH, RH and F.

An extension of the ERS/ERD (Pfurtscheller and da Silva, 1999),
called Event Related Spectral Perturbation (ERSP), based on sinu-
soidal wavelets rather than on filters (Makeig, 1993), was used to
allow more precise time–frequency analysis. For calculating the
ERS/ERD of each single volunteer a reference period from �1.9 to
�1.1 s (before the cross) was adopted, time–frequency decomposi-
tion was performed in a frequency range 3–55 Hz using a sinusoi-
dal wavelet with minimum 3 wavelet cycles per data window at
lowest frequencies. Overlapping Hanning tappers windows were
applied. Signal processing was implemented in EEGLAB.

In order to find regions of significant ERS/ERD for each condition
(on a single electrode site), a significance level was set to p = 0.05
and nonparametric bootstrapping procedure (N = 2000 randomisa-
tion) (Blair and Karinski, 1993) was performed, comparing ERS/
ERD maps between groups, applying the False Discover Rate
(FDR) correction (Benjamini and Yekutieli, 2001). ERS/ERD maps
for a single electrode were analysed for the central areas only.

ERS/ERD scalp maps over the whole scalp (61electrodes in total)
were created for three frequency bands: theta (4–8 Hz), alpha (8–
12 Hz) and beta (16–24 Hz). Comparison between scalp maps of
different groups or conditions was performed based on a permuta-
tion statistics (p = 0.05), a Monte Carlo method. A correction for
multiple comparisons was performed using the FDR. All proce-
dures were implemented in EEGLAB. Spatial analysis was limited
to electrode locations defined by 10-10 system (ACNS, 2006).
3. Results

3.1. BCI classification accuracy for bipolar montage

When classification was performed with 3 bipolar channels, the
classification accuracies in all groups except PWP was low, just
reaching the chance level of 65%. This increased chance level,
higher than 50% was adopted to compensate for a small number
of trials (Mueller-Putz et al., 2008).

The classification accuracy of AB group was 65 ± 4%, of PNP
group was 66 ± 5% and of PWP group was 70 ± 7% (Fig. 4a). The
ANOVA analysis showed a statistically significant difference for a
factor ‘groups’ (p = 0.0188) and no statistically significant differ-
ence for a factor ‘motor imagery type’ (p = 0.6302). There was no
statistically significant interaction among these factors
(p = 0.8188). A t-test between groups showed a statistically signif-
icant difference in the classification accuracy between PWP and
PNP group (p = 0.0211) and between AB and PWP group
(p = 0.009) but no statistically significant difference between AB
and PNP group (p = 0.7413).

3.2. BCI classification accuracy for CSP montages

Classification was performed with CSPs based on two different
numbers of electrodes. Classifier CSP1 was based on 23 electrodes
and a variable number of CSPs. A classifier CSP2 was based on 44
electrodes and 20 CSP; the number of CSPs was chosen to maxi-
mise the overall classification accuracy.

For CSP1 a detailed analysis showing classification results
between each pair of limbs for each subject was performed on
two representative CSPs, CSP1A (4 CSP) and CSP1B (14 CSP). CSP1A
was based on 4 CSP which is a configuration often used for BCI
(Müller-Gerking et al., 1999) while CSP1B was based on 14 CSP,
which is a configuration that achieved the highest overall classifi-
cation accuracy. Classification results are shown in Fig. 4b for
CSP1A and in Fig. 4c for CSP1B.

When classifier was based on a configuration with only 4 com-
mon spatial patterns (Fig. 4b), the average BCI classification accu-
racy for PWP group was 74 ± 9% which was comparable with the
average classification accuracy for AB group of 74 ± 7% and was
higher than the classification accuracy for the PNP group of
69 ± 8%. The ANOVA analysis showed a statistically significant dif-
ference for the factor ‘groups’ (p = 0.433) and no statistically signif-
icant difference for a factor ‘motor imagery type’ (p = 0.878). There
was no statistically significant interaction among the two factors
(p = 0.682). A t-test between groups showed a statistically signifi-
cant difference in the average classification accuracy between
PWP and PNP group (p = 0.0335) and between AB and PNP group
(p = 0.0343), but no statistically significant difference between AB
and PWP group (p = 0.808).

When the number of common spatial patterns increased to 14
(Fig. 4c), the average BCI classification accuracy for PWP group
was 78 ± 9% which was comparable with the average classification
accuracy for AB group of 76 ± 5% and was higher than the classifi-
cation accuracy for the PNP group of 73 ± 7% (Fig. 4c). The ANOVA
analysis showed a statistically significant difference for the factor
‘groups’ (p = 0.02) and no statistically significant difference for a
factor ‘motor imagery type’ (p = 0.8621). There was no statistically
significant interaction among the two factors (p = 0.682). A t-test
between groups showed a statistically significant difference in
the average classification accuracy between PWP and PNP group
(p = 0.0018) and between AB and PNP group (p = 0.0286), but no
statistically significant difference between AB and PWP group
(p = 0.1927).

When CSPs were computed with CSP2 (44 electrodes, 20 CSP fil-
ters), including the frontal and the parietal cortex, the classification
accuracy increased in all three groups but previously observed dif-
ference across groups remained. A classification accuracy of
82 ± 7% for PWP group was very similar to the classification accu-
racy of 82 ± 4% for AB group and was higher than the classification
accuracy of 78 ± 5% for PNP group (Fig. 4d).

The ANOVA analysis showed a statistically significant difference
for a factor ‘groups’ (p = 0.0118) and no statistically significant dif-
ference for a factor ‘motor imagery type’ (p = 0. 6774). There was
no statistically significant interaction among the two factors
(p = 0.3576). A t-test between groups showed a statistically signif-
icant difference in a classification accuracy between PWP and PNP
groups (p = 0.0135) and between AB and PNP groups (p = 0.0030)



Fig. 4. Classification accuracy (mean ± STD) between two different limbs for all three groups of volunteers using bipolar montage (Fig. 3a), CSP1A (Fig. 3b), CSP1B (Fig. 3c) and
CSP2 (Fig. 3d). The numbers above bars show mean values for a single group. Abbreviations: RH: right hand; LH: left hand; F: feet; AB: able bodied; PNP: patients with no pain;
PWP: patients with central neuropathic pain.
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and no statistically significant difference between AB and PWP
groups (p = 0.713).

To further investigate the consistency between classification
accuracies of PWP and PNP groups, a graph is produced showing
classification accuracies for all three groups for CSP1 based on 23
central electrodes (Fig. 5) for the variable number of common spa-
tial patterns ranging from 2 to 22. Results show that the overall
maximal classification accuracy for all three groups is achieved
for 14 CSPs. Statistically significant differences between classifica-
tion accuracies of PNP and PWP group was achieved for 8 out of 11
CSPs configurations while statistically significant difference
between AB and PNP group was achieved for 9 out of 11 CSPs. None
of the 11 classifiers showed a statistically significant difference in
classification accuracy between AB and PWP groups.

To summarise, for all classifiers PNP group had significantly
lower classification accuracies than the other two groups. There
was no statistically significant difference in classification accuracy
of MI of different limbs.

Two patients from PWP group reported increased pain in their
legs and one patient from PNP group reported an unpleasant tin-
gling sensation (i.e. paraesthesia) in their legs. The exact pain level
was however not measured, as this was an unexpected result at the
time of the experiment.

3.3. Analysis of ERS/ERD maps

Fig. 6a shows ERS/ERD maps at the electrode location C3 for MI
of the right hand, at Cz for MI of the feet and at C4 for MI of the left
hand. These electrodes are located approximately over the primary
motor cortex, as being most representative for a chosen limb,
though a single EEG electrode might record the electrical activity
of several sources. The column on the right shows the areas of sta-
tistically significant differences among the groups. The largest dif-
ferences among 3 groups can be noticed for MI of the right hand in
the alpha band, sustained over the whole periods of MI. Fig. 6b
shows the areas of statistically significant differences between
each pair (AB vs PNP, AB vs PWP and PWP vs PNP). This widely
adopted presentation method does not however show which group
has stronger activity, so its interpretation requires simultaneous
observation of ERS/ERD maps (Fig. 6a). Largest differences, spread
over a range of frequency bands, can be noticed between PWP
and PNP group across the theta, alpha and beta band for all three
types of MI. These differences are caused by stronger ERD in
PWP group (Fig. 6a). Differences between PWP and AB group,
caused by stronger ERD in PWP group, could be noticed two dis-
tinctive bands (alpha/theta and higher beta). A smaller difference,
mostly in the alpha band (stronger in AB group) can be noticed
between AB and PNP; being most pronounced for MI of the left
hand.

Fig. 7a shows scalp maps during MI of feet in the theta, alpha
and beta (16–24 Hz) band, averaged over the period of maximum
ERD from t = 0.4 to 0.8 s post cue. Fig. 7b shows the spatial distri-
bution of statistically significant differences between ERS/ERD of
different groups during MI for maps shown in Fig. 7a. Location of
the dots in Fig. 7b correspond to 10–10 electrode location used
in the study, where only statistically significant differences
between groups are shown by bold dots. PWP group had the larg-
est and spatially distinctive ERD in all three frequency bands. They



Fig. 5. Averaged classification accuracy for all combinations of limbs (mean ± SE) for CSP1A (23 electrodes) with the variable number of CSP. Abbreviations: AB: able bodied;
PNP: patients with no pain; PWP: patients with central neuropathic pain.
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had significantly stronger ERD than PNP group in the theta and
alpha band, the later being restricted to the centro-parietal region
(Fig. 7b). Compared to AB group, PWP group had a statistically sig-
nificant difference in ERS/ERD scalp maps in the alpha and beta
band at several electrode locations at the central, frontal and pari-
etal cortex. No surface cortical region showed statistically signifi-
cant differences between AB and PNP groups in any band.
4. Discussion

This study investigated the influence of central neuropathic
pain on the performance of a MI based BCI classifier in patients
with spinal cord injury and the relationship between BCI classifier
performance and the intensity of ERD during MI. Central neuro-
pathic pain increased event related desynchronisation during
motor imagery and also improved BCI classification accuracy.
4.1. Classification results

For classifiers based on CSPs, PWP group had a comparable level
of classification accuracy with AB group, independent of the
number of EEG channels or the derived CSPs. For a configuration
with only three bipolar channels PWP had a better classification
accuracy than the other two groups. PNP group had lowest classi-
fication accuracy of all three groups for all classifiers. Of interest is
a result that PWP group had a significantly higher classification
accuracy than PNP even when only three centrally placed bipolar
channels were used. This indicates that the area of largest differ-
ences between PWP and the other two groups is located in the
centro-parietal region of the cortex as this was the only cortical
area included in both CSP and in a bipolar montage. That was also
confirmed by ERD analysis (Fig. 7b) which showed largest differ-
ences between PWP and PNP groups in the alpha band in the cen-
tro-parietal region.

In a detailed ERS/ERD study performed on same three groups of
participants (Vuckovic et al., 2014) we showed that PWP group,
that had strongest ERD, had the largest number of electrodes loca-
tion with a statistically significant difference in ERD between three
MI tasks. As a consequence, in this study when we applied a BCI
classifier, PWP group had better classification accuracy than PNP
group, in particular with CSP which can select optimal electrode
location.

Increasing the number of electrodes improved classification
accuracy but did not influence a difference in classification
accuracy across groups. We used two sets of electrodes to cover
both the sensory and motor cortex, because pain as a sensory phe-
nomenon was expected to influence primarily the sensory area.
However results showing a relation between classification
accuracy among three groups are independent of the number of
electrodes and of the number of CSP used for classification.

Our classification results obtained with PNP group based on
CSP1A (with 4 CSP) are comparable with results of a study by
Pfurtscheller et al. (2009) who used CSP to classify imaginary
movements in chronic paraplegic patients. In the current study, a
classification accuracy increased with the increasing number of
CSP only up to a certain number of common spatial patterns, after
which classification accuracy decreases with increasing the num-
ber of CSP. By definition, the first few CSP are the most discrimina-
ble between groups (Müller-Gerking et al., 1999). Too large
number of CSP possibly resulted in ‘over fitting’ the classifier to
the training set, reducing its ability to generalise classification on
data from the testing set.

Of interest is the observation that there was no statistically sig-
nificant difference in classification accuracy between different
limbs. While all three groups had functional arms and hands,
PNP group had paralysed legs and lower abdomen while PWP
group had paralysis combined with pain in their legs. PWP had
increased ERD response for all three types of motor imagery, not
only for MI of feet, that could explain why classification between
feet and one of the hands was comparable to classification between
both hands. PNP had weaker ERD responses for MI of all limbs.
Previous studies on spinal cord injured patients with no pain
(Pfurtscheller et al., 2009) and on able-bodied people
(Pfurtscheller et al., 2006) showed slightly better classification
between MI of feet and a hand than between MI of two hands. They
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A. Vuckovic et al. / Clinical Neurophysiology 126 (2015) 2170–2180 2177
explained it by ‘focal ERD/surround ERS’ phenomena, often noticed
during imagined movement of feet (also noticed in Vuckovic et al.
(2014)) that might facilitate detection of MI of feet. In addition to
this, results from the literature (Tran et al., 2004; Boord et al.,
2008; Jensen et al., 2013) showed that both paralysis and pain have
global effect on EEG which spreads beyond the cortical presenta-
tion of the paralysed/painful limbs.
4.2. Event related synchronisation/desynchronisation

The analysis of event related desynchronisation showed that
PWP has stronger ERD than the other two groups over the central
electrode locations for MI of both painful and non-painful limbs.
Results of ERS/ERD analyses support BCI classification results
showing significantly higher classification accuracy in PWP than
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Fig. 7. Scalp maps of ERS/ERD during MI of feet for three groups of participants. (a) Averaged scalp maps over a period t = 0.4 s to 0.8 s post cue. Upper raw is for the theta
band, middle raw is for the alpha band and the lower raw is for the beta band. (b) Marked electrode locations shows areas of statistically significant differences between
groups for three different frequency bands. Abbreviations: AB: able bodied; PNP: patients with no pain; PWP: patients with central neuropathic pain.
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in PNP group. In this study it was not possible to separate the effect
of paralysis (including both sensory and motor impairments) and
CNP, because all CNP patients were also paraplegic. However dis-
tinctive results in PNP and PWP groups suggest that brain signa-
tures of CNP do not simply present the exaggerated brain
signature of paralysis. This can appear contradictory to fMRI stud-
ies showing that in amputees and patients with spinal cord injury
the extent of cortical reorganisation caused by the injury is propor-
tional to the intensity of pain (Flor, 2002; Gustin et al., 2010a;
Wrigley et al., 2009). Although the number of patients in this study
was relatively small, results are more in favour of a recent hypoth-
esis (Makin et al., 2013) that sensory-motor loss and CNP caused by
that loss produce distinctive brain responses. We believe that this
is observation that requires attention and further investigation on
the larger number of patients, ideally involving a group of patients
with CNP and no sensory-motor deficit.

Interestingly, although ERD in AB group seem to be of a compa-
rable intensity to PNP and was weaker than of PWP group, all CSP
classifiers showed higher classification accuracy for AB than for
PNP group. Results of bipolar classifier are in line with the analysis
of ERS/ERP showing highest classification accuracy for PWP group.
Classifiers in this study were limited to 8–30 Hz that covers both
sensory-motor rhythms in able-bodied people (8–12 Hz and 16–
24 Hz, Pfurtscheller and da Silva, 1999) and was previously used
for building CSP in similar studies on paraplegic patients
(Pfurtscheller et al., 2009). It is possible that more discriminative
results between groups would be achieved if the theta band was
also used, as both single electrode analysis and scalp maps analysis
indicate significant differences between PWP and PNP group in this
frequency band.

4.3. Influence of medication for treatment of CNP on baseline EEG

Most of participants in PWP group used antiepileptic or antide-
pressant drugs as a part of their pharmacological treatment of pain.
Antiepileptic drugs are known to increase resting state EEG in the
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theta band (Olbrich and Ams, 2013) while antidepressants increase
EEG amplitude in the theta and higher beta (>20 Hz) range (Bauer
and Bauer, 2005; Wauquier, 2005). This might influence the inten-
sity of ERD during motor imagery, but for this study, theta band
was not included in analysis, thus reducing the influence of the
drugs on the results of the study. Therefore, although inclusion of
the theta band, believed to be a signature of CNP, would potentially
improve performance of BCI classifier in PWP group, it would be
hard to distinguish to which extent this is due to pain and to which
extent due to medications.

It is believed that increased theta band power is related to thal-
amo-cortical dysrhythmia (Sarnthein and Jeanmonod, 2008), and
the shift of the dominant alpha frequency towards the theta band
(Boord et al., 2008; Sarnthein et al., 2006; Stern et al., 2006; Jensen
et al., 2013; Vuckovic et al., 2014). Patients with CNP who under-
went a surgery involving a therapeutic lesion of the thalamus,
reported reduction of pain that was accompanied with reduction
of theta band power (Sarnthein et al., 2006).

Better classification accuracy in paraplegic patients with CNP
might not directly imply that these patients are potentially better
candidates for MI based BCI. In a study by Gustin et al. (2008) six
out of seven tested patients with SCI and CNP reported increased
pain after practicing of pressing an imaginary car gas pedal for a
period of a week. Incidental finding of this study also indicate that
some patients may experience discomfort already during first MI
sessions.

CNP is related to the lack of sensory information coming from
the body (Haanpaa et al., 2011) and occurs months or years after
an injury (Siddall et al., 2003; Haanpaa et al., 2011). It is therefore
likely that immediately after the injury patients would have mini-
mal CNP symptoms. MI based BCI has been proposed as a rehabil-
itation therapy for SCI (Dobkin, 2007; Daly et al., 2009; Tam et al.,
2011; Onose et al., 2012; Roset et al., 2013). A therapy based on MI
BCI would aid improvement of the sensory-motor functions thus
hopefully preventing CNP. Therefore MI based BCI might be a strat-
egy better suited for rehabilitation, especially shortly after injury,
than for communication and control in long term, later after injury.

At present, due to the lack of recognition of the correlation
between CNP and the activity of the motor cortex, patients are typ-
ically not assessed for pain before being recruited for a BCI study.
We suggest that in future pain status pre and post motor imagina-
tion may require monitoring.
5. Conclusion

Central neuropathic pain in SCI patients affects the performance
of BCI classifiers and increases the amplitude of ERD over the sen-
sory-motor cortex during motor imagery. Higher classification
accuracy in paraplegic patients with pain compared to patients
with no pain was independent on the type of classifier and on
the number of recording electrodes used to create a classifier.
Higher classification accuracy existed independently whether the
classifier was based on MI of painful or non-painful limbs, indicat-
ing globally modified cortical activity.
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