Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Membrane structures containing InGaN/GaN quantum wells, fabricated by wet etching of sacrificial silicon substrates

Park, S. and Liu, C. and Gu, E. and Dawson, M.D. and Watson, I.M. and Bejtka, K. and Edwards, P.R. and Martin, R.W. (2006) Membrane structures containing InGaN/GaN quantum wells, fabricated by wet etching of sacrificial silicon substrates. Physica Status Solidi C, 3 (6). pp. 1949-1952. ISSN 1862-6351

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

InGaN/GaN multiple quantum wells (MQWs) emitting at 410-505 nm, with either 3 or 16 repeat periods, were grown on commercial GaN-on-silicon templates using metal organic vapour phase epitaxy. Spectroscopic and structural studies confirmed these MQWs are of similar quality to analogues grown on sapphire substrates. Wet etching of the silicon (111) substrates in HF-based solutions allowed the MQW structures to be converted into membranes up to 2 mm in diameter, suspended above macroscopic via holes. Such a fabrication step is attractive for the production of microcavities, and other forms of surface emitting laser. Several MQWs have been compared by photoluminescence and cathodoluminescence spectroscopy before and after conversion to membranes. These measurements indicated a consistent increase in luminescence intensity after substrate removal, accompanied by small redshifts in peak position. We have further demonstrated plasma etching of membrane structures from the underside, as will be used to optimise structures for optical pumping, and used atomic force microscopy to monitor associated changes in surface roughness.