Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Membrane structures containing InGaN/GaN quantum wells, fabricated by wet etching of sacrificial silicon substrates

Park, S. and Liu, C. and Gu, E. and Dawson, M.D. and Watson, I.M. and Bejtka, K. and Edwards, P.R. and Martin, R.W. (2006) Membrane structures containing InGaN/GaN quantum wells, fabricated by wet etching of sacrificial silicon substrates. Physica Status Solidi C, 3 (6). pp. 1949-1952. ISSN 1862-6351

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

InGaN/GaN multiple quantum wells (MQWs) emitting at 410-505 nm, with either 3 or 16 repeat periods, were grown on commercial GaN-on-silicon templates using metal organic vapour phase epitaxy. Spectroscopic and structural studies confirmed these MQWs are of similar quality to analogues grown on sapphire substrates. Wet etching of the silicon (111) substrates in HF-based solutions allowed the MQW structures to be converted into membranes up to 2 mm in diameter, suspended above macroscopic via holes. Such a fabrication step is attractive for the production of microcavities, and other forms of surface emitting laser. Several MQWs have been compared by photoluminescence and cathodoluminescence spectroscopy before and after conversion to membranes. These measurements indicated a consistent increase in luminescence intensity after substrate removal, accompanied by small redshifts in peak position. We have further demonstrated plasma etching of membrane structures from the underside, as will be used to optimise structures for optical pumping, and used atomic force microscopy to monitor associated changes in surface roughness.