Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Fabrication and performance of parallel-addressed InGaN micro-LED arrays

Choi, H.W. and Jeon, C.W. and Dawson, M.D. and Edwards, P.R. and Martin, R.W. (2003) Fabrication and performance of parallel-addressed InGaN micro-LED arrays. IEEE Photonics Technology Letters, 15 (4). pp. 510-512. ISSN 1041-1135

Full text not available in this repository. (Request a copy from the Strathclyde author)


High-performance, two-dimensional arrays of parallel-addressed InGaN blue micro-light-emitting diodes (LEDs) with individual element diameters of 8, 12, and 20 /spl mu/m, respectively, and overall dimensions 490 /spl times/490 /spl mu/m, have been fabricated. In order to overcome the difficulty of interconnecting multiple device elements with sufficient step-height coverage for contact metallization, a novel scheme involving the etching of sloped-sidewalls has been developed. The devices have current-voltage (I-V) characteristics approaching those of broad-area reference LEDs fabricated from the same wafer, and give comparable (3-mW) light output in the forward direction to the reference LEDs, despite much lower active area. The external efficiencies of the micro-LED arrays improve as the dimensions of the individual elements are scaled down. This is attributed to scattering at the etched sidewalls of in-plane propagating photons into the forward direction.