Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Initially tensioned orthotropic cylindrical shells conveying fluid: a vibration analysis

Zhang, Y.L. and Reese, J.M. and Gorman, D.G. (2002) Initially tensioned orthotropic cylindrical shells conveying fluid: a vibration analysis. Journal of Fluids and Structures, 16 (1). pp. 53-70. ISSN 0889-9746

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A linear analysis of the vibratory behaviour of initially tensioned orthotropic circular cylindrical shells conveying a compressible inviscid fluid is presented. The model is based on the three-dimensional nonlinear theory of elasticity and the Eulerian equations. A nonlinear strain-displacement relationship is employed to derive the geometric stiffness matrix due to initial stresses and hydrostatic pressures. Frequency-dependent fluid mass, damping and stiffness matrices associated with inertia, Coriolis and centrifugal forces, respectively, are derived through the fluid-structure coupling condition. The resulting equation governing the vibration of fluid-conveying shells is solved by the finite element method. The free vibration of initially tensioned orthotropic cylindrical shells conveying fluid is investigated; numerical examples are given and discussed.