Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes

Mills, A. and Hodgen, S. and Lee, S-K. (2005) Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes. Research on Chemical Intermediates, 31 (4-6). pp. 295-308. ISSN 0922-6168

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An overview of the recent investigations into the direct, lateral and remote oxidation of carbon-containing materials is given. The overview begins with the pioneering work of Fujishima and his co-workers involving the remote bleaching of methylene blue by UV-irradiation of titania in the gas phase. The further research of these workers conducted on the remote photocatalytic destruction of various polymers and dyes is then discussed briefly. The notable work of Paz and his co-workers on the lateral, but not remote, oxidation of octadecyltrichlorosilane (OTS) by photoeteched titania films is then examined. The striking observations associated with the lateral oxidation of soot by UV-irradiated thin titania films, reported by Choi and his colleagues, are reported. Finally, the results of our most recent work on soot covered titania films in which the direct, lateral and remote oxidation of soot by UV-irradiated thick titania films could be observed visually is discussed. The most likely agent responsible for these photocatalytic oxidation processes is considered and a suitable candidate, hydroxyl radicals, suggested.