Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Kinetics and mechanism of a macrocyclic chromium(III) complex oxidation to chromium(IV) by hexacyanoferrate(III) in strongly alkaline media

Chatlas, J. and Impert, O. and Katafias, A. and Kita, P. and Wrzeszcz, G. and Eriksen, J. and Monsted, O. and Mills, A. (2004) Kinetics and mechanism of a macrocyclic chromium(III) complex oxidation to chromium(IV) by hexacyanoferrate(III) in strongly alkaline media. Transition Metal Chemistry, 29 (6). pp. 634-643. ISSN 0340-4285

Full text not available in this repository. Request a copy from the Strathclyde author


Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)(2)](+), where cycb = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate( III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates. Kinetics of oxidation of the macrocyclic Cr(III) complex in alkaline solution has been studied under excess of the reductant. Rate determining formation of Cr(IV) by a second order process involving the Cr(III) and the Fe(III) reactants is seen. This reaction also involves a characteristic higher order than linear dependence on the hydroxide concentration. Reaction mechanisms for the processes, including oxidation of the coordinated macrocyclic ligand under excess of the oxidant- are proposed.