Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The use of titanium dioxide coatings deposited by APCVD on glass substrates to provide a dual action self cleaning

Sanderson, K.D. and Mills, A. and Hurst, S. and Lepre, A. and McKittrick, T. and Rimmer, D. and Ye, L. (2003) The use of titanium dioxide coatings deposited by APCVD on glass substrates to provide a dual action self cleaning. In: 46th Annual Society of Vacuum Coaters Technical Conference, 2003-05-03 - 2003-05-08.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Over recent years there has been a rapid growth in the markets for large area coated glass products. Among the driving forces for this growth have been building design, energy efficiency, conservation needs, environmental issues, and associated legislation. Coatings produced by chemical vapor deposition (CVD) have now been on the market for many years and cover a wide range of applications such as low emmissivity coatings based on n-type semiconductors, reflective solar control coatings, and protective barrier layer coatings. The presentation details the challenges of using APCVD to deposit polycrystalline TiO2 films, on large area glass substrates for self-cleaning applications. Details of the coatings structure and properties are discussed. An investigation into the photodestruction of various organic contaminants including paraffin wax and stearic acid is presented along with the hydrophilic performance of the product when exposed to UV radiation. The presentation puts the properties of the film into context by detailing the use of scattering measurements and simulated dirt mixes to show the benefit of hydrophilic and photoactive coatings on maintaining the cleanliness of a glass substrate and how this relates to real-life performance.