Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)-halide species in acidic aqueous media

Impert, Olga and Katafias, A. and Kita, Przemyslaw and Mills, Andrew and Pietkiewiez-Graczyk, Aleksandra and Wrzeszcz, Grzegorz (2003) Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)-halide species in acidic aqueous media. Dalton Transactions, 2003 (3). pp. 348-353. ISSN 1477-9234

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The kinetics of a fast leuco-Methylene Blue (LMB) re-oxidation to Methylene Blue (MB) by copper(II)-halide (Cl-, Br-) complexes in acidic aqueous media has been studied spectrophotometrically using a stopped-flow technique. The reaction follows a simple first order rate expression under an excess of the copper(II) species (and H+(aq)), and the pseudo-first order rate constant (k'(obs)) is largely independent of the atmosphere used (air, oxygen, argon). The rate law, at constant Cl- (Br-) anion concentration, is given by the expression: (d[MB+])/dt = ((k(a)K[H+] + k(b))/(1 + K[H+])).[Cu-II][LMB] = k'(obs)[LMB], where K is the protonation constant, and k(a) and k(b) are the pseudo-second order rate constants for protonated and deprotonated forms of LMB, respectively The rate law was determined based on the observed k'(obs) vs. [Cu-II] and [H+] dependences. The rate dramatically increases with [Cl-] over the range: 0.1-1.5 M, reflecting the following reactivity order: Cu2+(aq) << CuCl+(aq) <...< CuCl42-. The slow re-oxidation of LMB by oxygen has also been briefly examined at different [H+]. ESR results provide clear evidence for the formation of an intermediate radical. The mechanistic consequences of all these results are discussed.