Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)-halide species in acidic aqueous media

Impert, Olga and Katafias, A. and Kita, Przemyslaw and Mills, Andrew and Pietkiewiez-Graczyk, Aleksandra and Wrzeszcz, Grzegorz (2003) Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)-halide species in acidic aqueous media. Dalton Transactions, 2003 (3). pp. 348-353. ISSN 1477-9234

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The kinetics of a fast leuco-Methylene Blue (LMB) re-oxidation to Methylene Blue (MB) by copper(II)-halide (Cl-, Br-) complexes in acidic aqueous media has been studied spectrophotometrically using a stopped-flow technique. The reaction follows a simple first order rate expression under an excess of the copper(II) species (and H+(aq)), and the pseudo-first order rate constant (k'(obs)) is largely independent of the atmosphere used (air, oxygen, argon). The rate law, at constant Cl- (Br-) anion concentration, is given by the expression: (d[MB+])/dt = ((k(a)K[H+] + k(b))/(1 + K[H+])).[Cu-II][LMB] = k'(obs)[LMB], where K is the protonation constant, and k(a) and k(b) are the pseudo-second order rate constants for protonated and deprotonated forms of LMB, respectively The rate law was determined based on the observed k'(obs) vs. [Cu-II] and [H+] dependences. The rate dramatically increases with [Cl-] over the range: 0.1-1.5 M, reflecting the following reactivity order: Cu2+(aq) << CuCl+(aq) <...< CuCl42-. The slow re-oxidation of LMB by oxygen has also been briefly examined at different [H+]. ESR results provide clear evidence for the formation of an intermediate radical. The mechanistic consequences of all these results are discussed.