Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

An inverse vibration-based approach towards modelling and damage identification in nonlinearly vibrating structures. Application for delamination detection in a composite beam

Trendafilova, Irina (2012) An inverse vibration-based approach towards modelling and damage identification in nonlinearly vibrating structures. Application for delamination detection in a composite beam. Journal of Physics Conference Series, 382 (1). ISSN 1742-6588

[img] Microsoft Word
Trendafilova_I_Pure_An_inverse_vibration_based_approach_towards_modelling_and_damage_identification_in_nonlinearly_vibrating_structures._Application_for_delamination_detection_in_a_composite_beam_Aug_2012.docx - Preprint

Download (108kB)

Abstract

This study explores the possibilities for inverse analysis and modelling from data of a nonlinearly vibrating structure. We are suggesting a statistical approach based on singular spectrum analysis (SSA). The method is based on a free decay response, when the structure is given an initial disturbance and is left to vibrate on its own. The measured vibration response is decomposed into new variables, the principal components, which are used to uncover oscillatory patterns in the structural response. In this study an application of the methodology for the purposes of delamination detection in a composite beam is explored.