Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Anomalous ion channeling in AlInN/GaN bilayers: Determination of the strain state

Lorenz, K. and Franco, N. and Alves, E. and Watson, I.M. and Martin, R.W. and O'Donnell, K.P. (2006) Anomalous ion channeling in AlInN/GaN bilayers: Determination of the strain state. Physical Review Letters, 97. 085501. ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Monte Carlo simulations of anomalous ion channeling in near-lattice-matched AlInN/GaN bilayers allow an accurate determination of the strain state of AlInN by Rutherford backscattering or channeling. Although these strain estimates agree well with x-ray diffraction (XRD) results, XRD composition estimates are shown to have limited accuracy, due to a possible deviation from Vegard's law, which we quantify for this alloy. As the InN fraction increases from 13% to 19%, the strain in AlInN films changes from tensile to compressive with lattice matching predicted to occur at [InN]=17.1%.