Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Anomalous ion channeling in AlInN/GaN bilayers: Determination of the strain state

Lorenz, K. and Franco, N. and Alves, E. and Watson, I.M. and Martin, R.W. and O'Donnell, K.P. (2006) Anomalous ion channeling in AlInN/GaN bilayers: Determination of the strain state. Physical Review Letters, 97. 085501. ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Monte Carlo simulations of anomalous ion channeling in near-lattice-matched AlInN/GaN bilayers allow an accurate determination of the strain state of AlInN by Rutherford backscattering or channeling. Although these strain estimates agree well with x-ray diffraction (XRD) results, XRD composition estimates are shown to have limited accuracy, due to a possible deviation from Vegard's law, which we quantify for this alloy. As the InN fraction increases from 13% to 19%, the strain in AlInN films changes from tensile to compressive with lattice matching predicted to occur at [InN]=17.1%.