Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Individual energetics and the equilibrium demography of structured populations

Gurney, William and Middleton, D.A.J. and Nisbet, R.M. and McCauley, E. and Murdoch, W.W. and de Roos, A. (1996) Individual energetics and the equilibrium demography of structured populations. Theoretical Population Biology, 49 (3). pp. 344-368. ISSN 0040-5809

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper considers the relationship between the demographic mechanisms of population control and the energetics of the individuals who comprise the population. We examine the equilibrium properties of a class of structured population models in which individuals compete for some environmental resource (such as food) and demonstrate that population demography is independent of the nature of the feedback loop which establishes the equilibrium state. We thus derive general insights into the influence exerted by individual energetic and allocation strategies on population average demographic characteristics. We show that models of individual energetics which produce apparently very similar predictions at the individual level can result in very different behaviour at the population level. In addition, we observe that different models of individual mortality can imply marked differences in population demography and that the common assumption of constant mortality can be responsible for potentially unrealistic model behaviour. Our results emphasise the substantial data requirements for parameterising and testing individual-based models.