Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Breakdown processes in gas micro-bubbles in liquids under electric stress

Atrazhev, Vladimir and Vorob'ev, V.S. and Timoshkin, Igor and MacGregor, Scott and Given, M and Wilson, Mark and Wang, Tao (2012) Breakdown processes in gas micro-bubbles in liquids under electric stress. IEEE Transactions on Dielectrics and Electrical Insulation, 19 (5). pp. 1552-1558. ISSN 1070-9878

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The present work is concerned with a theoretical analysis of the breakdown characteristics of gas-filled micro-bubbles formed in insulating liquids stressed with electric field. It is assumed that the gas inside these bubbles is air which allows the use of experimental Paschen curve data for air in this analysis. Two main discharge mechanisms have been considered, the Townsend discharge and impulse breakdown. The combination of bubble diameter, D, gas pressure, p, and duration, τ, of the field stress determines the type of breakdown. Parameters which are required for the Townsend mechanism of breakdown and impulse breakdown to occur inside gas bubbles have been obtained and these conditions have been represented as boundary lines in the (Dp, τp) coordinate system. It is shown that there are such combinations of these parameters which satisfy neither Townsend nor impulse breakdown conditions. Experimental data on breakdown in air for these intermediate values of (Dp, tp) between the Townsend and the impulse discharges are not available in the literature and the breakdown behavior under such conditions is not well defined.