Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Thin-film oxygen sensors using a luminescent polynuclear gold(I) complex

Mills, A. and Tommons, C. and Bailey, R. T. and Crilly, P. and Tedford, M. C. (2011) Thin-film oxygen sensors using a luminescent polynuclear gold(I) complex. Analytica Chimica Acta, 702 (2). pp. 269-273. ISSN 0003-2670

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Robust thin-film oxygen sensors were fabricated by encapsulating a lipophilic, polynuclear gold(I) complex, bis{m-(bis(diphenylphosphino)octadecylamine-P,P′)}dichlorodigold(I), in oxygen permeable polystyrene and ormosil matrices. Strong phosphorescence, which was quenched by gaseous and dissolved oxygen, was observed from both matrices. The polystyrene encapsulated dye exhibited downward-turning Stern–Volmer plots which were well fitted by a two-site model. The ormosil trapped complex showed linear Stern–Volmer plots for dissolved oxygen quenching but was downward turning for gaseous oxygen. No leaching was observed when the ormosil based sensors were immersed in flowing water over an 8 h period. Both films exhibited fully reversible response and recovery to changing oxygen concentration with rapid response times.