Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Ova fecundity in Scottish atlantic salmon Salmo salar : predictions, selective forces and causal mechanisms

Bacon, P. and MacLean, J. and Malcolm, I. and Gurney, William (2012) Ova fecundity in Scottish atlantic salmon Salmo salar : predictions, selective forces and causal mechanisms. Journal of Fish Biology, 81 (3). pp. 921-938. ISSN 0022-1112

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Ova fecundities of Scottish Atlantic salmon Salmo salar, predicted from log(10) regression of ova numbers and female fork length (L(F)), differed widely between upland and lowland stocks within the same river, whereas sea-age, river and year factors had insignificant effects on fecundity once L(F) was accounted for. For upland fish, the relationship between log(10)L(F) and log(10) ova mass (M(O)) was stable between two datasets collected 40 years apart. Although upland and lowland females both produced comparable log(10)M(O) (log(10)L(F))(-1), lowland females partitioned this into 45% more, but smaller ova, whereas upland females produced fewer, but larger, eggs. The possible causes and implications of this are discussed for evolutionary perspectives (lifetime production), population structure (local tributary v. large catchments; environmental effects), population dynamics and stability (density-dependent control mechanisms) and fisheries management (stock-recruitment; short and long-term stock sustainability).