Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Diagnostics and prognostics utilising dynamic Bayesian networks applied to a wind turbine gearbox

Plumley, Charles Edward and Wilson, Graeme and Kenyon, Andrew and Quail, Francis and Zitrou, Athena (2012) Diagnostics and prognostics utilising dynamic Bayesian networks applied to a wind turbine gearbox. In: International Conference on Condition Monitoringand Machine Failure Prevention Technologies, CM & MFPT 2012, 2012-06-12 - 2012-06-14.

[img] PDF
Quail_F_Pure_Diagnostics_and_prognostics_utilising_dynamic_Bayesian_networks_applied_to_a_wind_turbine_gearbox_2012.pdf - Preprint

Download (391kB)

Abstract

The UK has the largest installed capacity of offshore wind and this is set to increase significantly in future years. The difficulty in conducting maintenance offshore leads to increased operation and maintenance costs compared to onshore but with better condition monitoring and preventative maintenance strategies these costs could be reduced. In this paper an on-line condition monitoring system is created that is capable of diagnosing machine component conditions based on an array of sensor readings. It then informs the operator of actions required. This simplifies the role of the operator and the actions required can be optimised within the program to minimise costs. The program has been applied to a gearbox oil testbed to demonstrate its operational suitability. In addition a method for determining the most cost effective maintenance strategy is examined. This method uses a Dynamic Bayesian Network to simulate the degradation of wind turbine components, effectively acting as a prognostics tool, and calculates the cost of various preventative maintenance strategies compared to purely corrective maintenance actions. These methods are shown to reduce the cost of operating wind turbines in the offshore environment.