Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Numerical solutions for lunar orbits

Vasile, Massimiliano and Finzi, Amalia E. (1997) Numerical solutions for lunar orbits. In: 48th International Astronautical Congress, 1997-10-06 - 1997-10-10.

[img] PDF
Vasile_M_Pure_Numerical_solutions_for_lunar_orbits_Oct_1997.pdf - Draft Version

Download (529kB)

Abstract

Starting from a variational formulation based on Hamilton’s Principle, the paper exploits the finite element technique in the time domain in order to solve orbital dynamic problems characterised by constrained boundary value rather than initial value problems. The solution is obtained assembling a suitable number of finite elements inside the time interval of interest, imposing the desired constraints, and solving the resultant set of non-linear algebraic equations by means of Newton-Raphson method. In particular, in this work this general solution strategy is applied to periodic orbits determination. The effectiveness of the approach in finding periodic orbits in the unhomogeneous gravity field of the Moon is assessed by means of relevant examples, and the results are compared with those obtained by standard time marching techniques as well as with analytical results.