Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Synthesis and characterisation of (hydroxypropyl)-2-aminomethyl pyridine containing hybrid polymer-silica SBA-15 materials supporting Mo(VI) centres and their use as heterogeneous catalysts for oct-1-ene epoxidation

Moreno, J. and Iglesias, J. and Melero, J. A. and Sherrington, D. C. (2011) Synthesis and characterisation of (hydroxypropyl)-2-aminomethyl pyridine containing hybrid polymer-silica SBA-15 materials supporting Mo(VI) centres and their use as heterogeneous catalysts for oct-1-ene epoxidation. Journal of Materials Chemistry, 21 (18). pp. 6725-6735. ISSN 0959-9428

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Hybrid organic–inorganic amino alcohol containing PGMA–SBA-15 materials have been prepared by first tethering poly(glycidyl methacrylate) (PGMA) chains onto the surface of SBA-15 materials using the atom transfer radical polymerization (ATRP) technique. The procedure involves the functionalization of silica-based SBA-15 materials with aminopropyl groups and 2-bromo-2 methylpropionyl bromide to form ATRP initiator species. Subsequent graft ATRP of glycidyl methacrylate leads to a large decrease of the textural properties in the final material, but nevertheless, the use of the ultra large pore SBA-15 support is beneficial for the achievement of porous hybrid organic–inorganic materials. Reaction of the glycidyl pendant groups in the tethered PGMA chains with 2-aminomethyl pyridine allows the formation of the (hydroxypropyl)-2-aminomethyl pyridine ligands to which molybdenum(VI) species catalytically active for epoxidation of terminal alkenes are bound. The materials thus prepared display high catalytic activity and excellent stability and reusability in the epoxidation of 1-octene with TBHP as oxidant. The presence of mesoporosity in the final Mo(VI)-containing hybrid materials boosts the catalytic activity of supported metal centres.