Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

Modelling spectral irradiation effects on single and multi-junction amorphous silicon photovoltaic devices

Betts, T.R. and Gottschalg, R. and Infield, D.G. (2002) Modelling spectral irradiation effects on single and multi-junction amorphous silicon photovoltaic devices. In: 29th IEEE Photovoltaic Specialists Conference, 2002-05-19 - 2002-05-24.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It has been previously reported that variations in the spectral irradiance under which an amorphous silicon device operates can have a significant effect on its electrical performance, often contributing to enhanced system yields compared to crystalline-based systems. In this work, spectral irradiance data based on models and measurements taken at the Centre for Renewable Energy Systems Technology (CREST) in the UK are presented. These are input into electrical models for amorphous silicon devices incorporating different number of junctions in order to investigate the impact of changing spectral irradiation. The results can be classified broadly as primary effects, those accounting for the available spectrally useful irradiance and secondary effects that consider the effects of mismatched currents in the stacked cells of multi-junction devices. The modeled short circuit currents correlate well with measurements and are demonstrated as a useful tool for further investigation.