Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Modelling spectral irradiation effects on single and multi-junction amorphous silicon photovoltaic devices

Betts, T.R. and Gottschalg, R. and Infield, D.G. (2002) Modelling spectral irradiation effects on single and multi-junction amorphous silicon photovoltaic devices. In: 29th IEEE Photovoltaic Specialists Conference, 2002-05-19 - 2002-05-24.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It has been previously reported that variations in the spectral irradiance under which an amorphous silicon device operates can have a significant effect on its electrical performance, often contributing to enhanced system yields compared to crystalline-based systems. In this work, spectral irradiance data based on models and measurements taken at the Centre for Renewable Energy Systems Technology (CREST) in the UK are presented. These are input into electrical models for amorphous silicon devices incorporating different number of junctions in order to investigate the impact of changing spectral irradiation. The results can be classified broadly as primary effects, those accounting for the available spectrally useful irradiance and secondary effects that consider the effects of mismatched currents in the stacked cells of multi-junction devices. The modeled short circuit currents correlate well with measurements and are demonstrated as a useful tool for further investigation.